RESUMO
The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.
Assuntos
Drosophila melanogaster , Transcriptoma , Humanos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , RNA/genética , RNA-Seq , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DrosophilaRESUMO
Schottky diode, capable of ultrahigh frequency operation, plays a critical role in modern communication systems. To develop cost-effective and widely applicable high-speed diodes, researchers have delved into thin-film semiconductors. However, a performance gap persists between thin-film diodes and conventional bulk semiconductor-based ones. Featuring high mobility and low permittivity, indium-tin-oxide has emerged to bridge this gap. Nevertheless, due to its high carrier concentration, indium-tin-oxide has predominantly been utilized as electrode rather than semiconductor. In this study, a remarkable quantum confinement induced dedoping phenomenon was discovered during the aggressive indium-tin-oxide thickness downscaling. By leveraging such a feature to change indium-tin-oxide from metal-like into semiconductor-like, in conjunction with a novel heterogeneous lateral design facilitated by an innovative digital etch, we demonstrated an indium-tin-oxide Schottky diode with a cutoff frequency reaching terahertz band. By pushing the boundaries of thin-film Schottky diodes, our research offers a potential enabler for future fifth-generation/sixth-generation networks, empowering diverse applications.
RESUMO
OBJECTIVE: Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome. DESIGN: We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified. RESULTS: Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion. CONCLUSION: Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.
Assuntos
Microbioma Gastrointestinal , Aneurisma Intracraniano , Metabolômica , Metagenômica , Triptofano , Aneurisma Intracraniano/microbiologia , Aneurisma Intracraniano/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Animais , Masculino , Camundongos , Feminino , Triptofano/metabolismo , Triptofano/sangue , Metabolômica/métodos , Metagenômica/métodos , Pessoa de Meia-Idade , Aneurisma Roto/microbiologia , Aneurisma Roto/metabolismo , Indicã/metabolismo , Indicã/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Fezes/microbiologia , Modelos Animais de Doenças , Idoso , Progressão da DoençaRESUMO
The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.
Assuntos
Proteína 10 de Linfoma CCL de Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Domínios Proteicos , Multimerização Proteica , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteína 10 de Linfoma CCL de Células B/química , Proteína 10 de Linfoma CCL de Células B/genética , Humanos , Cristalografia por Raios X , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Caspases/metabolismo , Caspases/químicaRESUMO
The mediator of IRF3 activation (MITA, also named STING) is critical for immune responses to abnormal cytosolic DNA and has been considered an important drug target in the clinical therapy of tumors and autoimmune diseases. In the present study, we report that MITA undergoes DDOST-mediated N-glycosylation in the endoplasmic reticulum (ER) upon DNA viral infection. Selective mutation of DDOST-dependent N-glycosylated residues abolished MITA oligomerization and thereby its immune functions. Moreover, increasing the expression of Ddost in the mouse brain effectively strengthens the local immune response to herpes simplex virus-1 (HSV-1) and prolongs the survival time of mice with HSV encephalitis (HSE). Our findings reveal the dependence of N-glycosylation on MITA activation and provide a new perspective on the pathogenesis of HSE.
Assuntos
Doenças Autoimunes , Encefalite por Herpes Simples , Herpesvirus Humano 1 , Viroses , Animais , Camundongos , GlicosilaçãoRESUMO
OBJECTIVE: To compare the real-world effectiveness and tolerability of calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) and onabotulinumtoxinA in chronic migraine (CM) patients. METHODS: This multicenter study involved retrospective analysis of prospectively collected data of CM patients treated with CGRP mAbs or onabotulinumtoxinA, including difficult-to-treat (DTT) patients (i.e., ≥3 preventive failures). Treatment outcomes were determined at 6 months based on prospective headache diaries and Migraine Disability Assessment (MIDAS). RESULTS: The study included 316 (55 M/261F, mean age 44.4 ± 13.5 years) and 333 (61 M/272F, mean age 47.9 ± 13.4 years) CM patients treated with CGRP mAbs or onabotulinbumtoxinA, respectively. At 6 months, CGRP mAb treatment was associated with a greater decrease in monthly migraine days (MMDs) (-13.0 vs. -8.7 days/month, p < 0.001) and a higher ≥50% responder rate (RR) (74.7% vs. 50.7%, p < 0.001) compared with onabotulinumtoxinA injections. The findings were consistent in DTT patients (-13.0 vs. -9.1 MMDs, p < 0.001; ≥50% RR: 73.9% vs. 50.3%, p < 0.001) or those with medication-overuse headache (MOH) (-13.3 vs. -9.0 MMDs, p < 0.001; ≥50% RR: 79.0% vs. 51.6%, p < 0.001). Besides, patients receiving CGRP mAbs had greater improvement (-42.2 vs. -11.8, p < 0.001) and a higher ≥50% RR (62.0% vs. 40.0%, p = 0.001) in MIDAS scores and a lower rate of adverse events (AEs) (6.0% vs. 21.0%, p < 0.001). However, none of the patients discontinued treatment due to AEs. CONCLUSIONS: In this multicenter, real-world study, CGRP mAbs were more effective than onabotulinumtoxinA in CM patients, even in DTT or MOH patients. All of these injectables were well tolerated. Further prospective studies are needed to verify these findings.
Assuntos
Anticorpos Monoclonais , Toxinas Botulínicas Tipo A , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Toxinas Botulínicas Tipo A/efeitos adversos , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Estudos Retrospectivos , Taiwan , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/administração & dosagem , Doença Crônica , Resultado do TratamentoRESUMO
Childhood absence epilepsy (CAE) is a common type of idiopathic generalized epilepsy, manifesting as daily multiple absence seizures. Although seizures in most patients can be adequately controlled with first-line antiseizure medication (ASM), approximately 25 % of patients respond poorly to first-line ASM. In addition, an accurate method for predicting first-line medication responsiveness is lacking. We used the quantitative electroencephalogram (QEEG) features of patients with CAE along with machine learning to predict the therapeutic effects of valproic acid in this population. We enrolled 25 patients with CAE from multiple medical centers. Twelve patients who required additional medication for seizure control or who were shifted to another ASM and 13 patients who achieved seizure freedom with valproic acid within 6 months served as the nonresponder and responder groups. Using machine learning, we analyzed the interictal background EEG data without epileptiform discharge before ASM. The following features were analyzed: EEG frequency bands, Hjorth parameters, detrended fluctuation analysis, Higuchi fractal dimension, Lempel-Ziv complexity (LZC), Petrosian fractal dimension, and sample entropy (SE). We applied leave-one-out cross-validation with support vector machine, K-nearest neighbor (KNN), random forest, decision tree, Ada boost, and extreme gradient boosting, and we tested the performance of these models. The responders had significantly higher alpha band power and lower delta band power than the nonresponders. The Hjorth mobility, LZC, and SE values in the temporal, parietal, and occipital lobes were higher in the responders than in the nonresponders. Hjorth complexity was higher in the nonresponders than in the responders in almost all the brain regions, except for the leads FP1 and FP2. Using KNN classification with theta band power in the temporal lobe yielded optimal performance, with sensitivity of 92.31 %, specificity of 76.92 %, accuracy of 84.62 %, and area under the curve of 88.46 %.We used various EEG features along with machine learning to accurately predict whether patients with CAE would respond to valproic acid. Our method could provide valuable assistance for pediatric neurologists in selecting suitable ASM.
Assuntos
Epilepsia Tipo Ausência , Criança , Humanos , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/tratamento farmacológico , Ácido Valproico/uso terapêutico , Convulsões/tratamento farmacológico , Eletroencefalografia/métodos , Aprendizado de MáquinaRESUMO
Ionic liquids have drawn great interest as electrolytes for energy storage applications in which they form characteristic electrical double layers at electrode interfaces. For ionic liquids at carbon electrode interfaces, their double layers are subject to nanoscale structuring of the electrode surface, involving altered ion structure and interactions that significantly influence the double layer capacitance. In this regard, we investigate the modulation of ionic liquid double layers by electrode surface roughness and the resulting effects on the ion structure, interaction, and capacitance. We performed fixed voltage molecular dynamics simulations to compute the differential capacitance profiles for the ionic liquids [BMIm+][TFSI-] and [BMIm+][FSI-] at model carbon electrode interfaces with the surface channel width at subnanometer and nanometer scales. We find that both [BMIm+][TFSI-] and [BMIm+][FSI-] exhibit enhanced differential capacitance for the electrode surface with a subnanometer channel width relative to the flat graphene surface, but the most pronounced enhancements for these two ionic liquids unexpectedly appear at different applied potential regimes. For [BMIm+][TFSI-], the nanostructured electrode shows significant enhancement of capacitance at high positive potential. For [BMIm+][FSI-], on the other hand, this enhancement is small at positive polarization but noticeable at low negative potential. We demonstrate that differences in these capacitance trends is due to differences in ion correlation that arise from a steric constraint of nanostructured electrode surface on the voltage-mediated restructuring of ions closest to the electrode interface. For example, the TFSI- and FSI- anions tend to structure with their charged and nonpolar groups in contact with the positive electrode surface when the constraint on these close-contact anions is relaxed. This anion structuring largely retains the cation association near the nanostructured electrode, resulting in only a slight increase in capacitance at positive polarization. Our simulations highlight the sensitive dependence of the innermost ion structure on the electrode surface nanostructure and applied voltage and the resulting influence on ion correlation and capacitance of ionic liquid double layers.
RESUMO
INTRODUCTION: Guidelines for infant CPR recommend the two-thumb encircling hands technique (TTT) and the two-finger technique (TFT) for chest compression. Some devices have been designed to assist with infant CPR, but are often not readily available. Syringe plungers may serve as an alternative infant CPR assist device given their availability in most hospitals. In this study, we aimed to determine whether CPR using a syringe plunger could improve CPR quality measurements on the Resusci-Baby manikin compared with traditional methods of infant CPR. METHODS: Compression area with a diameter of 1 to 2 cm is recommended in previous infant CPR device researches. In this is a randomized crossover manikin study, we examined the efficacy of the Syringe Plunger Technique (SPT) which uses the plunger of the 20 ml syringe with a 2 cm diameter flat piston, commonly available in hospital, for infant External Chest Compressions (ECC). Participants performed TTT, TFT and SPT ECC on Resusci® Baby QCPR® according to 2020 BLS guidelines. RESULTS: Sixty healthcare providers participated in this project. The median (IQR) ECC depths in the TTT, TFT and SPT in the first minute were 41 mm (40-42), 40 mm (38-41) and 40 mm (39-41), respectively, with p < 0.001. The median (IQR) ECC recoil in the TTT, TFT and SPT groups in the first minute was 15% (1-93), 64% (18-96) and 53% (8-95), respectively, with p = 0.003. The result in the second minute had similar findings. The SPT had the best QCPR score and less fatigue. CONCLUSION: The performance of chest compression depth and re-rebound ratio was statistically different among the three groups. TTT has good ECC depth and depth accuracy but poor recoil. TFT is the complete opposite. SPT can achieve a depth close to TTT and has a good recoil performance as TFT. Regarding comprehensive performance, SPT obtains the highest QCPR score, and SPT is also less fatigued. SPT may be an effective alternative technique for infant CPR.
Assuntos
Reanimação Cardiopulmonar , Lactente , Humanos , Reanimação Cardiopulmonar/métodos , Manequins , Polegar , Dedos , Tórax , Estudos Cross-Over , FadigaRESUMO
The development of new chemically recyclable polymers via monomer design would provide a transformative strategy to address the energy crisis and plastic pollution problem. Biaryl-fused cyclic esters were targeted to generate axially chiral polymers, which would impart new material performance. To overcome the non-polymerizability of the biaryl-fused monomer DBO, a cyclic ester Me-DBO installed with dimethyl substitution was prepared to enable its polymerizability via enhancing torsional strain. Impressively, Me-DBO readily went through well-controlled ring-opening polymerization, producing polymer P(Me-DBO) with high glass transition temperature (Tg >100 °C). Intriguingly, mixing these complementary enantiopure polymers containing axial chirality promoted a transformation from amorphous to crystalline material, affording a semicrystalline stereocomplex with a melting transition temperature more than 300 °C. P(Me-DBO) were capable of depolymerizing back to Me-DBO in high efficiency, highlighting an excellent recyclability.
RESUMO
Aptamer-based probes are pivotal components in various sensing strategies, owing to their exceptional specificity and versatile programmable structure. Nevertheless, numerous aptamer-based probes usually offer only a single function, limiting their capacity to meet the diverse requirements of multi-faceted sensing systems. Here, we introduced supersandwich DNA probes (SSW-DNA), designed and modified on the outer surface of nanochannels with hydrophobic inner walls, enabling dual functionality: qualitative detection for on-site analysis and quantitative detection for precise analysis. The fragmented DNAs resulting from the target recognition, are subsequently identified through lateral flow assays, enabling robust on-site qualitative detection of microcystin-LR with an impressively low limit of detection (LOD) at 0.01â µg/L. Meanwhile, the nanochannels enable highly sensitive quantification of microcystin-LR through the current analysis, achieving an exceptionally low LOD at 2.5×10-7 â µg/L, with a broad dynamic range spanning from 1×10-6 to 1×102 â µg/L. Furthermore, the process of target recognition introduces just a single potential error propagation, which reduces the overall risk of errors during the entire qualitative and quantitative detection process. This sensing strategy broadens the scope of applications for aptamer-based composite probes, holding promising implications across diverse fields, such as medical diagnosis, food safety, and environmental protection.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Sondas de DNA , DNA , Limite de DetecçãoRESUMO
Histone deacetylases (HDAs) regulate many aspects of plant development and responses to environmental changes. Previous studies have demonstrated that the Arabidopsis histone deacetylase HDA15 is a positive regulator in far-red (FR) light-mediated inhibition of hypocotyl elongation. Furthermore, HDA15 can be phosphorylated and its enzymatic activity is negatively regulated by phosphorylation. However, the kinases that can phosphorylate HDA15 are still unknown. Cyclin-dependent kinases (CDKs) are a large family of serine/threonine protein kinases and have been identified as major regulators of the cell cycle and transcription. In this study, we show that the cyclin-dependent kinase CDKC2 interacts with HDA15 both in vitro and in vivo. In vitro kinase assays show that CDKC2 phosphorylates HDA15. Genetic evidence suggests that HDA15 acts downstream of CDKC2 in hypocotyl elongation under FR light. Furthermore, HDA15 and CDKC2 function synergistically in the regulation of FR-mediated cell elongation. The expression of cell wall organization- and auxin signaling-related genes under FR light is increased in hda15 and cdkc2/hda15 mutants. Taken together, our study indicates that CDKC2 can phosphorylate HDA15 and plays an important role in FR light-regulated hypocotyl elongation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Luz , Ciclo Celular , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismoRESUMO
Candida viswanathii is a promising cell factory for producing dodecanedioic acid (DDA) and other long chain dicarboxylic acids. However, metabolic engineering of C. viswanathii is difficult partly due to the lack of synthetic biology toolkits. Here we developed CRISPR-based approaches for rational genome and metabolic engineering of C. viswanathii. We first optimized the CRISPR system and protocol to promote the homozygous gene integration efficiency to >60%. We also designed a split CRISPR system for one-step integration of multiple genes into C. viswanathii. We uncovered that co-expression of CYP52A19, CPRb and FAO2 that catalyze different steps in the biotransformation enhances DDA production and abolishes accumulation of intermediates. We also unveiled that co-expression of additional enzyme POS5 further promotes DDA production and augments cell growth. We harnessed the split CRISPR system to co-integrate these 4 genes (13.6 kb) into C. viswanathii and generated a stable strain that doubles the DDA titer (224 g/L), molar conversion (83%) and productivity (1.87 g/L/h) when compared with the parent strain. This study altogether identifies appropriate enzymes/promoters to augment dodecane conversion to DDA and implicates the potential of split CRISPR system for metabolic engineering of C. viswanathii.
Assuntos
Candida , Engenharia Metabólica , Candida/genética , Candida/metabolismo , Ácidos Dicarboxílicos/metabolismo , Sistemas CRISPR-CasRESUMO
Histone deacetylases (HDAs) play an important role in transcriptional regulation of multiple biological processes. In this study, we investigated the function of HDA15 in abscisic acid (ABA) responses. We used immunopurification coupled with mass spectrometry-based proteomics to identify proteins interacting with HDA15 in Arabidopsis (Arabidopsis thaliana). HDA15 interacted with the core subunits of the MOS4-associated complex (MAC), MAC3A and MAC3B, with interaction between HDA15 and MAC3B enhanced by ABA. hda15 and mac3a/mac3b mutants were ABA-insensitive during seed germination and hyposensitive to salinity. RNA sequencing analysis demonstrated that HDA15 and MAC3A/MAC3B co-regulate ABA-responsive intron retention (IR). Furthermore, HDA15 reduced the histone acetylation level of genomic regions near ABA-responsive IR sites and the association of MAC3B with ABA-responsive pre-mRNA was dependent on HDA15. Our results indicate that HDA15 is involved in ABA responses by interacting with MAC3A/MAC3B to mediate splicing of introns.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fenômenos Biológicos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Íntrons/genética , Sementes/metabolismoRESUMO
Molecular lanthanide phosphonates [Ln2 (H3 tpmm)2 (H2 O)6 ] â xH2 O (Ln=Eu, EuP; Ln=Tb, TbP) were synthesized. Single-crystal X-ray diffraction confirmed that EuP has a sandwich-like dinuclear structure, in which the Eu(III) center adopts a {EuO8 } distorted dodecahedral geometry. XRPD patterns prove that TbP and EuP are isomorphous and isostructural. EuP and TbP are highly thermally stable approaching 450 °C and exhibit red- and green-light emissions from the characteristic 4 f-4 f transition of the Eu3+ and Tb3+ , respectively. Interestingly, luminescence modulation is achieved for the chemically mixed Eu/Tb phosphonate analogues, c-Eux Tb2 -x P (x=1.5, 1, 0.5), and physically mixed Eu/Tb phosphonate materials, p-yEuP : zTbP (y : z=3 : 1, 1 : 1, 1 : 3), with varying the excitation wavelength. Of particular note, near-white-light emission is also achieved for c-EuTbP, p-EuP : TbP, and p-EuP : 3TbP when excited at 365â nm. Therefore, these dinuclear molecular lanthanide phosphonates emitting excitation wavelength and Eu3+ : Tb3+ ratio dependent luminescence might be potential candidates for color-tunable luminescence materials and white-light-emitting materials. On the other hand, the bright green-light emission makes TbP to be an excellent reusable luminescence sensor for selective detection of Fe3+ with Stern-Volmer quenching constant (KSV ) of 9.66×103 â M-1 and detection limit (DL) of 0.42â µM through absorption competition caused luminescence quenching effect.
RESUMO
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2 ) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3 NH3 PbI3 and C60 with and without the modification of PbI2 using inâ situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3 NH3 PbI3 /C60 interface with the modification of PbI2 as compared to that without PbI2 . Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3 NH3 PbI3 /C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.
RESUMO
BACKGROUND: Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS: Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS: We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS: Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Humanos , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-akt , Retroalimentação , Proteínas Quinases S6 Ribossômicas 70-kDa , Fosfatidilinositol 3-Quinases , FluoruracilaRESUMO
The current state of the COVID-19 pandemic is a global health crisis. To fight the novel coronavirus, one of the best-known ways is to block enzymes essential for virus replication. Currently, we know that the SARS-CoV-2 virus encodes about 29 proteins such as spike protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), Papain-like protease (PLpro), and nucleocapsid (N) protein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) for viral entry and transmembrane serine protease family member II (TMPRSS2) for spike protein priming. Thus in order to speed up the discovery of potential drugs, we develop DockCoV2, a drug database for SARS-CoV-2. DockCoV2 focuses on predicting the binding affinity of FDA-approved and Taiwan National Health Insurance (NHI) drugs with the seven proteins mentioned above. This database contains a total of 3,109 drugs. DockCoV2 is easy to use and search against, is well cross-linked to external databases, and provides the state-of-the-art prediction results in one site. Users can download their drug-protein docking data of interest and examine additional drug-related information on DockCoV2. Furthermore, DockCoV2 provides experimental information to help users understand which drugs have already been reported to be effective against MERS or SARS-CoV. DockCoV2 is available at https://covirus.cc/drugs/.
Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , SARS-CoV-2/efeitos dos fármacos , Antivirais/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Curadoria de Dados/métodos , Mineração de Dados/métodos , Humanos , Internet , Modelos Moleculares , Pandemias , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
STUDY OBJECTIVE: To evaluate whether aggressive cervical dilation is effective for creating the initial perforation between noncommunicating cavities of the complete septate uterus (CSU), which serves as the first step of hysteroscopic cervix-preserving metroplasty (CPM). DESIGN: A retrospective cohort. SETTING: A tertiary referral center. PATIENTS: Fifty-three patients with CSU were diagnosed using vaginal examinations, combined two- and three-dimensional vaginal ultrasounds, and office-based hysteroscopies. INTERVENTIONS: Patients who had received hysteroscopic CPM with the initial perforation created by aggressive cervical dilation or by the traditional method of bougie-guided incisions were compared. MEASUREMENTS AND MAIN RESULTS: Of the 53 patients with CSU, 44 patients received hysteroscopic CPM that required the creation of a perforation. Patients who received aggressive cervical dilation for creation of the perforation had nonsignificantly shorter surgical times (33.5 minutes, 95% confidence interval [CI], 28.4-38.6 vs 48.7 minutes, 95% CI, 28.2-71.3, p = .099), used significantly lower volumes of distending media (3.6 liters, 95% CI, 3.1-4.1 vs 6.8 liters, 95% CI, 4.2-9.3, p <.001), and had higher success rates (84.4%, 95% CI, 67.2-94.7 vs 50.0%, 95% CI, 21.1-78.9, p = .019). The sites of perforation all occurred on the endocervical septum and were generally fibrous and avascular. CONCLUSION: We present a novel, effective method for creating the initial perforation in hysteroscopic CPM. The success may be because of the existence of a potential weakness in the septum of the duplicated cervix, which spontaneously tears upon aggressive mechanical dilation. The method forgoes the risks associated with sharp incisions based on potentially unreliable cues and may greatly simplify the procedure.
Assuntos
Colo do Útero , Útero Septado , Gravidez , Feminino , Humanos , Colo do Útero/cirurgia , Estudos de Coortes , Estudos Retrospectivos , Dilatação/efeitos adversos , Útero/cirurgia , Histeroscopia/métodosRESUMO
This study was to investigate three agents possible protective effect against DM-induced cardiovascular dysfunction in spontaneously hypertensive rats (SHR). Control group was fed normal diet, DM group was injected with STZ/NA and fed high fat diet (HFD), and treatment groups were given STZ/NA, fed HFD, and then oral gavaged with eugenosedin-A (Eu-A), glibenclamide (Gli), or pioglitazone (Pio) 5 mg/kg/per day for 4-week, respectively. Eu-A, Gli, and Pio clearly ameliorated the changes of body weight, cardiac weight, and the biochemical parameters, cardiovascular disorders and inflammation. Like Gli and Pio, Eu-A may be effectively to control DM and the cardiovascular dysfunction.