Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Allergy ; 79(4): 1001-1017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37855043

RESUMO

BACKGROUND: IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS: We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS: IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION: The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.


Assuntos
Hipersensibilidade Alimentar , Malus , Animais , Humanos , Coelhos , Betula , Proteínas Recombinantes de Fusão , Pólen , Escherichia coli , Antígenos de Plantas , Imunoglobulina E , Alérgenos , Hipersensibilidade Alimentar/prevenção & controle , Vacinas Sintéticas , Imunoglobulina G , Proteínas de Plantas
2.
Allergy ; 78(12): 3136-3153, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37701941

RESUMO

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Assuntos
Hipersensibilidade Alimentar , Pólen , Ratos , Animais , Humanos , Epitopos , Antígenos de Plantas , Alérgenos , Imunoglobulina G , Imunoglobulina E , Peptídeos , Proteínas de Plantas , Proteínas Recombinantes
3.
Allergy ; 77(11): 3408-3425, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690994

RESUMO

BACKGROUND: Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS: One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS: N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION: Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.


Assuntos
COVID-19 , Leucócitos Mononucleares , Humanos , Citocinas/metabolismo , Imunidade Celular , Interleucina-13 , Interleucina-2 , Leucócitos Mononucleares/metabolismo , SARS-CoV-2 , Vacinação
4.
Allergy ; 77(8): 2431-2445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35357709

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS: We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS: PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION: The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Imunoglobulina G , Pandemias/prevenção & controle , Coelhos , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Allergy ; 77(1): 230-242, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453317

RESUMO

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/genética
6.
Allergy ; 76(1): 131-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249442

RESUMO

Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.


Assuntos
Hipersensibilidade , Vacinas , Alérgenos , Dessensibilização Imunológica , Humanos , Hipersensibilidade/terapia , Imunoglobulina E
7.
Allergy ; 76(3): 751-765, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128792

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID-19-infected patients during disease but little is known regarding a possible protracted impact of COVID-19 on the adaptive and innate immune system in COVID-19 convalescent patients. METHODS: We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS-CoV-2-specific antibody levels against the S-protein, its RBD-subunit, and viral nucleocapsid in a cohort of COVID-19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. RESULTS: Even ten weeks after disease COVID-19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA-DR and CD38 expression. Multiparametric regression analyses showed that in COVID-19-infected patients both CD3+ CD4+ and CD3+ CD8+ effector memory cells were higher, while CD25+ Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID-19-infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti-S and anti-RBD, but not anti-NC antibody levels. Moreover, a "young immunological age" as determined by numbers of CD3+ CD45RA+ CD62L+ CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. CONCLUSION: Acute SARS-CoV-2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Linfócitos/imunologia , Neutrófilos/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Convalescença , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675759

RESUMO

BACKGROUND: COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS: We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS: RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION: We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.

11.
Front Immunol ; 14: 1241518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928538

RESUMO

Albumins from animals are highly cross-reactive allergens for patients suffering from immunoglobulin E (IgE)-mediated allergy. Approximately 20-30% of cat and dog allergic patients show IgE reactivity and mount IgE-mediated allergic reactions to cat and dog albumin. It is astonishing that allergic patients can develop specific IgE responses against animal albumins because these proteins exhibit a more than 70% sequence identity to human serum albumin (HSA) which is the most abundant protein in the blood of the human body. The sequence identity of cat albumin (Fel d 2) and dog albumin (Can f 3) and HSA are 82% and 80%, respectively. Given the high degree of sequence identity between the latter two allergens and HSA one would expect that immunological tolerance would prohibit IgE sensitization to Fel d 2 and Can f 3. Here we discuss two possibilities for how IgE sensitization to Fel d 2 and Can f 3 may develop. One possibility is the failed development of immune tolerance in albumin-allergic patients whereas the other possibility is highly selective immune tolerance to HSA but not to Fel d 2 and Can f 3. If the first assumption is correct it should be possible to detect HSA-specific T cell responses and HSA-containing immune complexes in sensitized patients. In the latter scenario few differences in the sequences of Fel d 2 and Can f 3 as compared to HSA would be responsible for the development of selective T cell and B cell responses towards Fel d 2 as well as Can f 3. However, the immunological mechanisms of albumin sensitization have not yet been investigated in detail although this will be important for the development of allergen-specific prevention and allergen-specific immunotherapy (AIT) strategies for allergy to albumin.


Assuntos
Albuminas , Hipersensibilidade , Humanos , Gatos , Animais , Cães , Alérgenos , Imunoglobulina E , Albumina Sérica Humana
12.
EBioMedicine ; 59: 102953, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32855110

RESUMO

BACKGROUND: Chronic hepatitis B virus (HBV) infections are a global health problem. There is a need for therapeutic strategies blocking continuous infection of liver cells. The grass pollen allergy vaccine BM32 containing the preS domain of the large HBV surface protein (LHBs) as immunogenic carrier induced IgG antibodies in human subjects inhibiting HBV infection in vitro. Aim of this study was the quantification, epitope mapping and investigation of HBV genotype cross-reactivity of preS-specific antibodies in subjects treated with different dosage regimens of BM32 METHODS: Hundred twenty eight grass pollen allergic patients received in a double-blind, placebo-controlled trial five monthly injections of placebo (aluminum hydroxide, n= 34) or different courses of BM32 (2 placebo + 3 BM32, n= 33; 1 placebo + 4 BM32, n= 30; 5 BM32, n= 31). Recombinant Escherichia coli-expressed preS was purified. Overlapping peptides spanning preS and the receptor-binding sites from consensus sequences of genotypes A-H were synthesized and purified. Isotype (IgM, IgG, IgA, IgE) and IgG subclass (IgG1-IgG4) responses to preS and peptides were determined by ELISA at baseline, one and four months after the last injection. IgG1 and IgG4 subclass concentrations specific for preS and the receptor-binding site were measured by quantitative ELISA. FINDINGS: Five monthly injections induced the highest levels of preS-specific IgG consisting mainly of IgG1 and IgG4, with a sum of median preS-specific IgG1 and IgG4 concentrations of >135 µg/ml reaching up to 1.8 mg/ml. More than 20% of preS-specific IgG was directed against the receptor-binding site. BM32-induced IgG cross-reacted with the receptor-binding domains from all eight HBV genotypes A-H. INTERPRETATION: BM32 induces high levels of IgG1 and IgG4 antibodies against the receptor binding sites of all eight HBV genotypes and hence might be suitable for therapeutic HBV vaccination. FUNDING: This study was supported by the PhD program IAI (KPW01212FW), by Viravaxx AG and by the Danube-ARC funded by the Government of Lower Austria. Rudolf Valenta is a recipient of a Megagrant of the Government of the Russian Federation, grant No 14.W03.31.0024.


Assuntos
Reações Cruzadas/imunologia , Mapeamento de Epitopos , Genótipo , Anticorpos Anti-Hepatite B/genética , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Rinite Alérgica Sazonal/prevenção & controle , Vacinas/imunologia , Alérgenos/imunologia , Especificidade de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Humanos , Esquemas de Imunização , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Masculino , Pólen/imunologia , Ligação Proteica , Proteínas Recombinantes/imunologia , Vacinação , Vacinas/administração & dosagem
13.
Front Immunol ; 11: 1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733455

RESUMO

Vaccines for infectious diseases have improved the life of the human species in a tremendous manner. The principle of vaccination is to establish de novo adaptive immune response consisting of antibody and T cell responses against pathogens which should defend the vaccinated person against future challenge with the culprit pathogen. The situation is completely different for immunoglobulin E (IgE)-associated allergy, an immunologically-mediated hypersensitivity which is already characterized by increased IgE antibody levels and T cell responses against per se innocuous antigens (i.e., allergens). Thus, allergic patients suffer from a deviated hyper-immunity against allergens leading to inflammation upon allergen contact. Paradoxically, vaccination with allergens, termed allergen-specific immunotherapy (AIT), induces a counter immune response based on the production of high levels of allergen-specific IgG antibodies and alterations of the adaptive cellular response, which reduce allergen-induced symptoms of allergic inflammation. AIT was even shown to prevent the progression of mild to severe forms of allergy. Consequently, AIT can be considered as a form of therapeutic vaccination. In this article we describe a strategy and possible road map for the use of an AIT approach for prophylactic vaccination against allergy which is based on new molecular allergy vaccines. This road map includes the use of AIT for secondary preventive vaccination to stop the progression of clinically silent allergic sensitization toward symptomatic allergy and ultimately the prevention of allergic sensitization by maternal vaccination and/or early primary preventive vaccination of children. Prophylactic allergy vaccination with molecular allergy vaccines may allow halting the allergy epidemics affecting almost 30% of the population as it has been achieved for vaccination against infectious diseases.


Assuntos
Alérgenos/imunologia , Dessensibilização Imunológica , Hipersensibilidade/prevenção & controle , Hipersensibilidade/terapia , Vacinação , Vacinas/imunologia , Alérgenos/administração & dosagem , Animais , Ensaios Clínicos como Assunto , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunoglobulina E/imunologia , Peptídeos/imunologia , Gravidez , Prevenção Primária , Prevenção Secundária , Resultado do Tratamento , Vacinação/métodos , Vacinas/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA