RESUMO
Laboratory testing methods to confirm the identity of meat products and eliminate food fraud regularly rely on PCR amplification of extracted DNA, with most published assays detecting mitochondrial sequences, providing sensitive presence/absence results. By targeting single-copy nuclear targets instead, relative quantification measurements are achievable, providing additional information on the proportions of meat species detected. In this Methods paper, new assays for horse, donkey, duck, kangaroo, camel, water buffalo and crocodile have been developed to expand the range of species that can be quantified, and a previously published reference assay targeting the myostatin gene has been modified to include marsupials and reptiles. The accuracy of this ratio measurement approach was demonstrated using dPCR with mixtures of meat DNA down to 0.1%. However, the limit of detection (LOD) of this approach is not just determined by the assay targets, but by the samples themselves, with food or feed ingredients and processing impacting the DNA yield and integrity. In routine testing settings, the myostatin assay can provide multiple quality control roles, including monitoring the yield and purity of extracted DNA, identifying the presence of additional meats not detected by the suite of species-specific assays and potentially estimating a sample-specific LOD based on measured copy numbers of the myostatin target. In addition to the myostatin positive control assay, a synthetic DNA reference material (RM) has been designed, containing PCR targets for beef, pork, sheep, chicken, goat, kangaroo, horse, water buffalo and myostatin, to be used as a positive template control. The availability of standardised measurement methods and associated RMs significantly improves the reliability, comparability and transparency of laboratory testing, leading to greater confidence in results.
RESUMO
Emerging infectious disease threats require rapid response tools to inform diagnostics, treatment, and outbreak control. RNA-based metagenomics offers this; however, most approaches are time-consuming and laborious. Here, we present a simple and fast protocol, the RAPIDprep assay, with the aim of providing a cause-agnostic laboratory diagnosis of infection within 24 h of sample collection by sequencing ribosomal RNA-depleted total RNA. The method is based on the synthesis and amplification of double-stranded cDNA followed by short-read sequencing, with minimal handling and clean-up steps to improve processing time. The approach was optimized and applied to a range of clinical respiratory samples to demonstrate diagnostic and quantitative performance. Our results showed robust depletion of both human and microbial rRNA, and library amplification across different sample types, qualities, and extraction kits using a single workflow without input nucleic-acid quantification or quality assessment. Furthermore, we demonstrated the genomic yield of both known and undiagnosed pathogens with complete genomes recovered in most cases to inform molecular epidemiological investigations and vaccine design. The RAPIDprep assay is a simple and effective tool, and representative of an important shift toward the integration of modern genomic techniques with infectious disease investigations.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Humanos , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Genômica , RNA Viral/genéticaRESUMO
Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection with the most severe disease in the young and elderly. Non-pharmaceutical interventions and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated regions of the Australian continent, New South Wales (NSW) and Australian Capital Territory (ACT) in the east, and Western Australia. Through genomic sequencing we reveal a major reduction in RSV genetic diversity following COVID-19 emergence with two genetically distinct RSV-A clades circulating cryptically, likely localised for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria and to cause extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic, as mitigation measures may disrupt seasonal patterns, causing larger or more severe outbreaks.
Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Lactente , Pandemias/prevenção & controle , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Estações do Ano , VitóriaRESUMO
Human metapneumovirus (HMPV) is an important cause of upper and lower respiratory tract disease in individuals of all ages. It is estimated that most individuals will be infected by HMPV by the age of five years old. Despite this burden of disease, there remain caveats in our knowledge of global genetic diversity due to a lack of HMPV sequencing, particularly at the whole-genome scale. The purpose of this study was to create a simple and robust approach for HMPV whole-genome sequencing to be used for genomic epidemiological studies. To design our assay, all available HMPV full-length genome sequences were downloaded from the National Center for Biotechnology Information (NCBI) GenBank database and used to design four primer sets to amplify long, overlapping amplicons spanning the viral genome and, importantly, specific to all known HMPV subtypes. These amplicons were then pooled and sequenced on an Illumina iSeq 100 (Illumina, San Diego, CA, USA); however, the approach is suitable to other common sequencing platforms. We demonstrate the utility of this method using a representative subset of clinical samples and examine these sequences using a phylogenetic approach. Here we present an amplicon-based method for the whole-genome sequencing of HMPV from clinical extracts that can be used to better inform genomic studies of HMPV epidemiology and evolution.
Assuntos
Genoma Viral , Metapneumovirus/genética , RNA Viral , Variação Genética , Sequenciamento Completo do GenomaRESUMO
Respiratory syncytial virus (RSV) is an important human respiratory pathogen. In temperate regions, a distinct seasonality is observed, where peaks of infections typically occur in early winter, often preceding the annual influenza season. Infections are associated with high rates of morbidity and mortality and in some populations exceed that of influenza. Two subtypes, RSV-A and RSV-B, have been described, and molecular epidemiological studies have shown that both viruses mostly co-circulate. This trend also appears to be the case for Australia; however, previous genomic studies have been limited to cases from one Eastern state-New South Wales. As such, the broader spatial patterns and viral traffic networks across the continent are not known. Here, we conducted a whole-genome study of RSV comparing strains across eastern and Western Australia during the period January 2016 to June 2017. In total, 96 new RSV genomes were sequenced, compiled with previously generated data, and examined using a phylodynamic approach. This analysis revealed that both RSV-A and RSV-B strains were circulating, and each subtype was dominated by a single genotype, RSV-A ON1-like and RSV-B BA10-like viruses. Some geographical clustering was evident in strains from both states with multiple distinct sub-lineages observed and relatively low mixing across jurisdictions, suggesting that endemic transmission was likely seeded from imported, unsampled locations. Overall, the RSV phylogenies reflected a complex pattern of interactions across multiple epidemiological scales from fluid virus traffic across global and regional networks to fine-scale local transmission events.
RESUMO
The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea, and Iran. Phylogenetic analyses of whole-genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.