Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 299, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619619

RESUMO

A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Animais , Ovinos , Staphylococcus aureus/genética , Genômica , Leite
2.
Food Microbiol ; 83: 104-108, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202400

RESUMO

Today, edible insects represent a hot topic as an emerging and eco-friendly source of protein. The mealworm (Tenebrio molitor L.) is among the most employed insects for human consumption and feed purposes. So far Listeria monocytogenes, have never been detected either in products sold on the market or during the rearing process. In this study, the substrate employed for mealworm rearing was deliberately contaminated with L. monocytogenes and the bacterium was enumerated during the rearing period and after technological treatments of the larvae. L. monocytogenes persisted during the rearing period. Washing the larvae did not produce any significant effect, while fasting the larvae for 24 or 48 h reduced the L. monocytogenes load (P < 0.001). Oven cooking eliminated L. monocytogenes cells from the product, reducing the risk associated to this foodborne pathogen to zero.


Assuntos
Ração Animal/microbiologia , Larva/microbiologia , Listeria monocytogenes/isolamento & purificação , Tenebrio/microbiologia , Animais , Carga Bacteriana , Pão/microbiologia , Culinária , Dieta , Jejum , Contaminação de Alimentos/análise
3.
Electrophoresis ; 39(16): 2160-2167, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29761912

RESUMO

American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host.


Assuntos
Abelhas/enzimologia , Eletroforese/métodos , Peptídeo Hidrolases/análise , Animais , Abelhas/microbiologia , Quimotripsina/análise , Interações entre Hospedeiro e Microrganismos , Larva/enzimologia , Larva/imunologia , Larva/microbiologia , Paenibacillus larvae/patogenicidade , Pupa/enzimologia , Tripsina/análise
4.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836845

RESUMO

While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 106 CFU/µg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. IMPORTANCE: This paper presents the first steps toward advanced genetic engineering of the industrial butanol producer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT). In addition to providing an efficient method for introducing foreign DNA into this species, we demonstrate successful rational engineering for increasing solvent production. Examples of future applications of this work include metabolic engineering for improving desirable industrial traits of this species and heterologous gene expression for expanding the end product profile to include high-value fuels and chemicals.


Assuntos
Biocombustíveis/análise , Butanóis/metabolismo , Clostridium/metabolismo , Engenharia Metabólica/métodos , Fermentação
5.
Trop Anim Health Prod ; 49(6): 1135-1142, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526988

RESUMO

Paratuberculosis disease is a chronic bacterial disease infection of ruminants of global relevance, caused by MAP (Mycobacterium avium subsp. paratuberculosis). The present study was conducted on the Garfagnina goat breed that is an Italian native goat population registered on the Tuscan regional repertory of genetic resources at risk of extinction. Forty-eight adult goats (27 serologically positive to MAP-positive and 21 serologically negative to MAP-negative) belonging to a single flock that had experienced annual mortalities due to MAP infection were identified and genotyped with the Illumina GoatSNP60 BeadChip. Diagnosis was achieved by serological tests, as well as post-mortem examination of affected animals. A genome-wide scan was then performed on the individual marker genotypes, in an attempt to identify genomic regions associated with MAP infection disease. Nine significant markers were highlighted and they were located within, or nearby, annotated genes. Two genes found in this study encode are linked to protein kinases that are among the most important enzymes involved in the immune response to Johne's disease, and four genes are involved in the functions of the Golgi complex.


Assuntos
Resistência à Doença/genética , Doenças das Cabras/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Animais , Feminino , Genoma , Doenças das Cabras/microbiologia , Cabras , Itália , Masculino , Paratuberculose/microbiologia
6.
Trop Anim Health Prod ; 47(8): 1567-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26245917

RESUMO

Paratuberculosis is an infectious disease which affects ruminants. In this work, a sheep flock in Garfagnana district (Tuscany, Italy) was examined by agar gel immune-diffusion (AGID) tests, culture, and PCR from feces, milk, tissue samples, and cheeses. At the first AGID test, 7/280 (2.5 %) animals were positive. From these animals, feces and milk samples were collected: 4/7 feces (57.14 %) and 2/7 milk samples (28.57 %) were positive to culture and 7/7 (100 %) feces samples and 1/7 milk samples (14.28 %) were positive to PCR; 2/4 (50 %) cheeses ripened for 14 days and 1/3 (33.33 %) cheese ripened for 20 days were positive to PCR, from which no viable microorganisms were isolated. Then, the AGID-positive animals were slaughtered and tissue samples were taken from one sheep with PCR-positive feces and milk: the liver, intestine, mesenteric lymph nodes, but not the spleen and mammary lymph nodes were positive to culture; all these samples were instead PCR-positive. After 1 year, a second AGID survey was performed on the remaining animals: 6/244 (2.45 %) subjects were positive to this test. Data obtained revealed the presence of paratuberculosis in a sheep population in Garfagnana.


Assuntos
Fezes/microbiologia , Leite/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/microbiologia , Doenças dos Ovinos/microbiologia , Carneiro Doméstico/microbiologia , Animais , Queijo/microbiologia , Genótipo , Íleo/microbiologia , Imunodifusão , Itália , Linfonodos/microbiologia , Reação em Cadeia da Polimerase/veterinária , Ovinos
7.
Pathogens ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921754

RESUMO

The occurrence of antibiotic-resistant bacteria in foodstuff involves a human health risk. Edible insects are a precious resource; however, their consumption raises food safety issues. In this study, the occurrence of antibiotic resistant bacteria in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.) and frass was assessed. Antibiotics were not used during the rearing. Enterobacteriaceae and enterococci were isolated from 17 larvae and eight frass samples. In total, 62 and 69 isolates presumed to belong to Enterobacteriaceae and Enterococcus spp., respectively, were obtained and tested for antibiotic susceptibility via disk diffusion. Based on the results, isolates were grouped, and representative resistant isolates were identified at species level through 16S rRNA gene sequencing. For enterococci resistance, percentages higher than 15% were observed for vancomycin and quinupristin-dalfopristin, whereas Enterobacteriaceae resistance higher than 25% was found against cefoxitin, ampicillin, and amoxicillin-clavulanic acid. Based on the species identification, the observed resistances seemed to be intrinsic both for enterococci and Enterobacteriaceae, except for some ß-lactams resistance in Shigella boydii (cefoxitin and aztreonam). These could be due to transferable genetic elements. This study suggests the need for further investigations to clarify the role of edible insects in the spreading of antibiotic resistance determinants through the food chain.

8.
Plants (Basel) ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674554

RESUMO

In the circular economy framework, hydrosols, by-products of the essential oil industry, are gaining attention for their potential in waste reduction and resource reuse. This study analyzed hydrosols from six edible flowers, investigating their chemical composition (VOC-Hyd) and antibacterial properties alongside volatile organic compounds of fresh flowers (VOC-Fs) and essential oils (EOs). Antirrhinum majus exhibited ketones as major VOC-Fs (62.6%) and VOC-Hyd (41.4%), while apocarotenoids dominated its EOs (68.0%). Begonia cucullata showed alkanes (33.7%) and aldehydes (25.7%) as primary VOC-Fs, while alkanes were prevalent in both extracts (65.6% and 91.7% in VOC-Hyd and in EOs, respectively). Calandula officinalis had monoterpenoids in VOC-Fs and VOC-Hyd (89.3% and 49.7%, respectively), while its EOs were rich in sesquiterpenoids (59.7%). Dahlia hortensis displayed monoterpenoid richness in both VOC-Fs and extracts. Monocots species' VOC-Fs (Polianthes tuberosa, Tulbaghia cominsii) were esters-rich, replaced by monoterpenoids in VOC-Hyd. P. tuberosa EO maintained ester richness, while T. cominsii EOs contained a significant percentage of sulfur compounds (38.1%). Antibacterial assays indicated comparable minimum inhibitory concentration profiles across VOC-Hyd: B. calcullata and P. tuberosa against Staphylococcus aureus and Salmonella enterica ser. typhimurium, T. cominsii against Escherichia coli and S. enterica, A. majus and C. officinalis against S. aureus, and D. hortensis against S. enterica.

9.
World J Microbiol Biotechnol ; 29(10): 1913-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23613101

RESUMO

The aim of this study was to investigate some probiotic properties of 42 wild Lactobacillus plantarum strains isolated from different Italian foods of animal origin. The strains were first screened for their antibiotic resistance profile (chloramphenicol, erythromycin, gentamicin, and tetracycline), subsequently they were tested for their in vitro resistance to lysozyme (100 mg L⁻¹), low pH (3.0, 2.5 and 2.0) and bile salts (0.3, 0.5 and 1.0 %). Moreover, agglutination property was studied (adhesion to Saccharomyces cerevisiae cells), as well as the presence of bsh and msa genes. The strains with the best characteristics were subjected to a further trial in order to evaluate their ability to survive to multiple stresses over time (lysozyme, low pH and bile salts) and the effect of these treatments on adhesion to yeast cells. All the strains were susceptible to chloramphenicol, erythromycin and gentamicin, while 6 strains were excluded from further evaluation because of their resistant phenotype against tetracycline. All the strains were able to grow in presence of lysozyme, as well as in MRS broth at pH 3.0. Only 4 strains showed a growth rate lower than 80 % when grown in MRS broth at pH 2.5, while a relevant growth rate decrease was observed after exposure to pH 2.0. Bile salts didn't affect the viability of the L. plantarum cells. Twenty-one strains out of 33 tested strains were able to adhere to S. cerevisiae cells. Presence of both bsh and msa genes was detected in 6 strains. The strains resistant to all the stresses, positive to agglutination with S. cerevisiae and showing bsh and msa genes were selected for further evaluation and subjected to different stress treatments over time. The assessment of growth rates showed that exposure to lysozyme significantly increased low pH resistance in L. plantarum. This increase ranged from 2.35 to 15.57 %. The consequential lysozyme and low pH exposures didn't affect the growth rate values after bile salts treatment, as well as the ability of the strains to adhere to yeast cells wasn't modified by previous treatments (lysozyme, low pH and bile salts). The present work allows to increase knowledge about non starter lactic acid bacteria from Italian food products. The studied L. plantarum strains showed a good potential for their use as probiotic cultures. However, more in vivo tests are necessary to confirm this potentiality.


Assuntos
Microbiologia de Alimentos , Lactobacillus plantarum/isolamento & purificação , Probióticos/isolamento & purificação , Antibacterianos/metabolismo , Aderência Bacteriana , Ácidos e Sais Biliares/metabolismo , Genes Bacterianos , Concentração de Íons de Hidrogênio , Itália , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Lactobacillus plantarum/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Muramidase/metabolismo
10.
Foods ; 12(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231686

RESUMO

In recent years, essential oils (EOs) have received interest due to their antibacterial properties. Accordingly, the present study aimed to investigate the effectiveness of the EOs obtained from seven species of Salvia on three strains of Listeria monocytogenes (two serotyped wild strains and one ATCC strain), a bacterium able to contaminate food products and cause foodborne disease in humans. The Salvia species analysed in the present study were cultivated at the Botanic Garden and Museum of the University of Pisa, and their air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus. The obtained EOs were analysed via gas chromatography coupled with mass spectrometry for the evaluation of their chemical composition, and they were tested for their inhibitory and bactericidal activities by means of MIC and MBC. The tested Eos showed promising results, and the best outcomes were reached by S. chamaedryoides EO, showing an MIC of 1:256 and an MBC of 1:64. The predominant compounds of this EO were the sesquiterpenes caryophyllene oxide and ß-caryophyllene, together with the monoterpenes bornyl acetate and borneol. These results suggest that these EOs may possibly be used in the food industry as preservatives of natural origins.

11.
Antibiotics (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139947

RESUMO

Colistin is an "old" antimicrobial belonging to the class of polymyxins, initially discovered in 1947 [...].

12.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35203874

RESUMO

Salmonellosis is one of the most important zoonoses in Europe and the world. Human infection may evolve in severe clinical diseases, with the need for hospitalization and antimicrobial treatment. Colistin is now considered an important antimicrobial to treat infections from multidrug- resistant Gram-negative bacteria, but the spreading of mobile colistin-resistance (mcr) genes has limited this option. We aimed to evaluate colistin minimum inhibitory concentration and the presence of mcr (mcr-1 to mcr-9) genes in 236 Salmonella isolates previously collected from different animals and the environment between 2000 and 2020. Overall, 17.79% of isolates were resistant to colistin; no differences were observed in relation to years of isolation (2000-2005, 2009-2014, and 2015-2020), Salmonella enterica subspecies (enterica, salamae, diarizonae, and houtenae), origin of samples (domestic animals, wildlife, and environment), or animal category (birds, mammals, and reptiles); only recently isolated strains from houseflies showed the most resistance. Few isolates (5.93%) scored positive for mcr genes, in particular for mcr-1, mcr-2, mcr-4, mcr-6, and mcr-8; furthermore, only 2.54% of isolates were mcr-positive and colistin-resistant. Detected resistance to colistin was equally distributed among all examined Salmonella isolates and not always related to the presence of mcr genes.

13.
Pathogens ; 11(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215071

RESUMO

Exotic reptiles are increasingly being bred as pets in many countries around the world, including Poland. However, the close contact between reptiles and their owners provides favourable conditions for the transmission of zoonotic pathogens. In this work, we examined E. coli isolates from 67 captive reptiles regarding their virulence, antibiotic susceptibility, phylogenetic affiliation, and genetic diversity. The incidence of E. coli was highest in snakes (51.6%, 16 isolates/31 samples), and slightly lower in turtles (44.4%, 8/18) and lizards (44.4%, 8/18). Genes encoding virulence factors were confirmed in 50% of isolates and the most common were the traT (37.5%, n = 12), fyuA (21.87%, n = 7), and irp-2 (15.62%, n = 5). The majority (71.87%, n = 23) of E. coli isolates were susceptible to all of the antimicrobial substances used in the study. Streptomycin resistance (21.87%, n = 7) was the most frequent, while resistance to other antimicrobial substances was sporadic. One strain (3.12%) was classified as multidrug-resistant. The presence of resistance genes (aadA, tetA, tetB, tetM, and blaTEM) was confirmed in 12.5% (n = 4) of the isolates. The majority (65.6%, n = 21) of E. coli isolates represented the B1 phylogenetic group. (GTG)5-PCR fingerprinting showed considerable genetic variation in the pool of tested isolates. The frequency of E. coli in reptiles is much lower than in mammals or birds. Due to the presence of virulence genes, characteristic of both intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC), reptilian strains of E. coli have pathogenic potential, and therefore people in contact with these animals should follow good hygiene practices.

14.
RSC Adv ; 12(54): 35358-35366, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540247

RESUMO

The COVID-19 pandemic has further confirmed to the community that direct contact with contaminated surfaces and objects represents an important source of pathogen spreading among humans. Therefore, it is of paramount importance to design effective germicidal paints to ensure a rapid and potent disinfectant action of surfaces. In this work, we design novel germicide polymeric coatings by inserting quaternary ammonium and sugar groups on the macromolecular backbone, thus respectively endowing the polymer with germicide features and hydrophilicity to interact with the surfaces. An aliphatic polyketone was selected as a starting polymer matrix that was functionalized with primary amine derivatives via the Paal-Knorr reaction. The resulting polymers were deposited on cellulose filter papers and checkboard charts with excellent coating yield and substrate coverage as determined by scanning electron microscopy for cellulose. Remarkably, the substrates coated by the functional polymers bearing quaternary ammonium compounds showed excellent bactericide properties with antibacterial rate of 99% and logarithmic reduction of >3. Notably, the polymers with higher hydrophobicity showed better retention on the substrate after being treated with water at neutral pH.

15.
Microorganisms ; 9(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809073

RESUMO

Brucellosis is a zoonosis caused by different Brucella species. Wild boar (Sus scrofa) could be infected by some species and represents an important reservoir, especially for B. suis biovar 2. This study aimed to investigate the prevalence of Brucella spp. by serological and molecular assays in wild boar hunted in Tuscany (Italy) during two hunting seasons. From 287 animals, sera, lymph nodes, livers, spleens, and reproductive system organs were collected. Within sera, 16 (5.74%) were positive to both rose bengal test (RBT) and complement fixation test (CFT), with titres ranging from 1:4 to 1:16 (corresponding to 20 and 80 ICFTU/mL, respectively). Brucella spp. DNA was detected in four lymph nodes (1.40%), five epididymides (1.74%), and one fetus pool (2.22%). All positive PCR samples belonged to Brucella suis biovar 2. The results of this investigation confirmed that wild boar represents a host for B.suis biovar. 2 and plays an important role in the epidemiology of brucellosis in central Italy. Additionally, epididymis localization confirms the possible venereal transmission.

16.
Pathogens ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498307

RESUMO

Wild boar is an animal the population of which constantly increases in Europe. This animal plays an important role as a reservoir for several pathogens, including three of the most important zoonoses: salmonellosis, yersiniosis and listeriosis. The aim of this investigation was to evaluate the occurrence of antimicrobial-resistant and virulence factor genes of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes isolated from wild boar in Tuscany (Central Italy). During two consequent hunting seasons (2018/2019 and 2019/2020), rectal swabs, spleens and livers were collected from 287 hunted wild boar to isolate strains. Each isolate was tested to investigate its antimicrobial resistance and to detect virulence factor genes by PCR. Eighteen Salmonella strains (6.27%) were isolated. Of these, 66.7% were resistant to streptomycin, 13.4% to cephalothin, 6.67% to imipenem and one isolate (6.67%) was resistant simultaneously to five antimicrobials. Moreover, the most detected genes were sopE (73.4%), pipB (66.7%), sodCI (53.3%), spvR and spvC (46.7%). In total, 54 (17.8%) Yersinia enterocolitica were isolated; of them, 26 (48.1%), 9 (16.7%), 17 (31.5%), 1 (1.85%) and 1 (1.85%) belonged to biotypes 1, 2, 3, 4 and 5, respectively. All strains (100%) demonstrated resistance to cephalothin and 70.4% to amoxicillin-clavulanic acid, 55.6% to ampicillin, and 37.0% to cefoxitin. Additionally, the most detected genes were ystA (25.9%), inv (24.1%), ail (22.2%), ystB (18.5%) and virF (14.8%). Finally, only one Listeria monocytogenes isolate (0.35%) was obtained, belonging to serogroup IVb, serovar 4b, and it was found to be resistant to cefoxitin, cefotaxime and nalidixic acid. The results highlighted the role of wild boar as a carrier for pathogenic and antimicrobial-resistant Salmonella spp., Yersinia enterocolitica and Listeria monocytogens, representing a possible reservoir for domestic animals and human pathogens.

17.
Comp Immunol Microbiol Infect Dis ; 76: 101656, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915404

RESUMO

Teat-dipping is one of the most effective methods to prevent mammary infections in ruminants, including sub-clinical mastitis caused by coagulase-negative staphylococci (CoNS). Improper disinfectant application could expose microorganisms to sub-inhibitory concentrations leading to phenotypic variations. In this study, 12 chlorhexidine-digluconate (CHDG)-tolerant (of which 4 qac positive) and 12 benzalkonium chloride (BC)-tolerant (of which 7 qac-positive) CoNS isolates from ovine milk were exposed to sub-inhibitory concentrations of CHDG and BC, respectively. Changes in disinfectant susceptibility against BC and CHDG, antibiotic resistance against 12 antibiotics and biofilm production were then assessed for both groups. After CHDG stress, 67 % and 83 % of the CHDG-stressed isolates doubled their MICs for BC and CHDG, respectively and 2 qac-negative isolates showed a four-fold increase of their MBCs for CHDG. After BC stress, MICs for BC and CHDG doubled in 58 % and 83 % of the BC-stressed isolates, respectively, while one qac-positive isolate increased four-fold the MIC for BC. Cross-resistance to antibiotics was assessed by disc diffusion method. Some qac-positive isolates varied their resistance profile, while a blaZ-positive isolate showed a resistant phenotype against ampicillin only after the exposure to the disinfectant. As for qac-positive isolates, one CHDG-stressed and 2 BC-stressed increased their resistance to kanamycin and cefoxitin, respectively. The Congo Red Agar test was carried out to assess the in vitro slime production: all isolates were negative after stress. In conclusion, sub-inhibitory exposure to disinfectants may affect disinfectant and antibiotic susceptibility, the latter in particular for qac-positive isolates and those hosting unexpressed antibiotic resistance genes.


Assuntos
Desinfetantes , Doenças dos Ovinos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Coagulase , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Feminino , Testes de Sensibilidade Microbiana/veterinária , Leite , Ovinos , Infecções Estafilocócicas/veterinária , Staphylococcus
18.
Animals (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923497

RESUMO

Domestic dogs (Canis lupus familiaris) used for wild boar (Sus scrofa) hunting may represent incidental hosts for several zoonotic pathogens. This investigation aimed to evaluate the presence of anti-Leptospira antibodies and the occurrence, antimicrobial resistance, and virulence of Salmonella spp., Yersinia enterocolitica, and Listeria monocytogenes in sera and rectal swabs collected from 42 domestic hunting dogs in the Tuscany region (Italy). Regarding Leptospira, 31 out of 42 serum samples (73.8%) were positive and serogroup Pomona was the most detected (71.4%) at titers between 1:100 and 1:400. Four Salmonella isolates (9.52%) were obtained, all belonging to serotype Infantis; two of them showed antimicrobial resistance to streptomycin, while pipB and sopE presence was assessed in all but one isolate. Concerning Yersinia enterocolitica, seven isolates (16.7%) were obtained, six belonging to biotype 1 and one to biotype 4. Resistance to amoxicillin-clavulanic acid, cephalothin, and ampicillin was detected. Biotype 4 presented three of the virulence genes searched (ystA, ystB, inv), while isolates of biotype 1 showed only one gene. No Listeria monocytogenes was isolated from dog rectal swabs. The results suggest that hunting dogs are exposed to different bacterial zoonotic agents, potentially linked to their work activity, and highlight the possible health risks for humans.

19.
Vet Sci ; 7(2)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517254

RESUMO

The effects of veterinary drugs, dietary supplements and non-protein amino acids on the European honey bee (Apis mellifera ligustica Spinola, 1806) ventriculum microbial profile were investigated. Total viable aerobic bacteria, Enterobacteriaceae, staphylococci, Escherichia coli, lactic acid bacteria, Pseudomonas spp., aerobic bacterial endospores and Enterococcus spp. were determined using a culture-based method. Two veterinary drugs (Varromed® and Api-Bioxal®), two commercial dietary supplements (ApiHerb® and ApiGo®) and two non-protein amino acids (GABA and beta-alanine) were administered for one week to honey bee foragers reared in laboratory cages. After one week, E. coli and Staphylococcus spp. were significantly affected by the veterinary drugs (p < 0.001). Furthermore, dietary supplements and non-protein amino acids induced significant changes in Staphylococcus spp., E. coli and Pseudomonas spp. (p < 0.001). In conclusion, the results of this investigation showed that the administration of the veterinary drugs, dietary supplements and non-protein amino acids tested, affected the ventriculum microbiological profile of Apis mellifera ligustica.GABA; beta-alanine; oxalic acid; diet effect; microbiota.

20.
Animals (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348681

RESUMO

Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belonging to 16 different serovars were analyzed for gastric acid environment resistance, presence of virulence genes (mgtC, rhuM, pipB, sopB, spvRBC, gipA, sodCI, sopE), antimicrobial resistance and presence of antimicrobial resistance genes (blaTEM, blaPSE-1, aadA1, aadA2, aphA1-lab, strA-strB, tetA, tetB, tetC, tetG, sul1, sul2, sul3). A percentage of 44.83% of strains showed constitutive and inducible gastric acid resistance, whereas 37.93% of strains became resistant only after induction. The genes sopB, pipB and mgtC were the most often detected, with 79.31%, 48.28% and 37.93% of positive strains, respectively. Salmonella virulence plasmid genes were detected in a S. enterica sup. houtenae ser. 40:z4,z23:-strain. Fifteen different virulence profiles were identified: one isolate (ser. Typhimurium) was positive for 6 genes, and 6 isolates (3 ser. Typhimurium, 2 ser. Typhimurium monophasic variant and 1 ser. Choleraesuis) scored positive for 5 genes. None of the isolates resulted resistant to cefotaxime and ciprofloxacin, while all isolates were susceptible to ceftazidime, colistin and gentamycin. Many strains were resistant to sulfonamide (75.86%), tetracycline (51.72%), streptomycin (48.28%) and ampicillin (31.03%). Twenty different resisto-types were identified. Six strains (4 ser. Typhimurium, 1 ser. Derby and 1 ser. Typhimurium monophasic variant) showed the ASSuT profile. Most detected resistance genes sul2 (34.48%), tetA (27.58%) and strA-strB (27.58%). Great variability was observed in analyzed strains. S. ser. Typhimurium was confirmed as one of the most virulent serovars. This study underlines that swine could be a reservoir and source of pathogenic Salmonella strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA