Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(39): 24243-24250, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929037

RESUMO

The necrotrophic fungal pathogen Cochliobolus victoriae produces victorin, a host-selective toxin (HST) essential for pathogenicity to certain oat cultivars with resistance against crown rust. Victorin is a mixture of highly modified heterodetic cyclic hexapeptides, previously assumed to be synthesized by a nonribosomal peptide synthetase. Herein, we demonstrate that victorin is a member of the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Analysis of a newly generated long-read assembly of the C. victoriae genome revealed three copies of precursor peptide genes (vicA1-3) with variable numbers of "GLKLAF" core peptide repeats corresponding to the victorin peptide backbone. vicA1-3 are located in repeat-rich gene-sparse regions of the genome and are loosely clustered with putative victorin biosynthetic genes, which are supported by the discovery of compact gene clusters harboring corresponding homologs in two distantly related plant-associated Sordariomycete fungi. Deletion of at least one copy of vicA resulted in strongly diminished victorin production. Deletion of a gene encoding a DUF3328 protein (VicYb) abolished the production altogether, supporting its predicted role in oxidative cyclization of the core peptide. In addition, we uncovered a copper amine oxidase (CAO) encoded by vicK, in which its deletion led to the accumulation of new glycine-containing victorin derivatives. The role of VicK in oxidative deamination of the N-terminal glycyl moiety of the hexapeptides to the active glyoxylate forms was confirmed in vitro. This study finally unraveled the genetic and molecular bases for biosynthesis of one of the first discovered HSTs and expanded our understanding of underexplored fungal RiPPs.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Ascomicetos/genética , Desaminação , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidade , Deleção de Genes , Família Multigênica , Micotoxinas/genética , Micotoxinas/toxicidade , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
2.
Plant Cell ; 30(7): 1562-1581, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29871985

RESUMO

In plant-microbe interactions, plant sugars produced by photosynthesis are not only a carbon source for pathogens, but may also act as signals that modulate plant defense responses. Here, we report that decreasing sorbitol synthesis in apple (Malus domestica) leaves by antisense suppression of ALDOSE-6-PHOSPHATE REDUCTASE (A6PR) leads to downregulation of 56 NUCLEOTIDE BINDING/LEUCINE-RICH REPEAT (NLR) genes and converts the phenotypic response to Alternaria alternata from resistant to susceptible. We identified a resistance protein encoded by the apple MdNLR16 gene and a small protein encoded by the fungal HRIP1 gene that interact in both a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. Deletion of HRIP1 in A. alternata enables gain of virulence on the wild-type control plant. Overexpression of MdNLR16 in two antisense A6PR lines increases resistance, whereas RNAi suppression of MdNLR16 in the wild-type control decreases resistance against A. alternata MdWRKY79 transcriptionally regulates MdNLR16 by binding to the promoter of MdNLR16 in response to sorbitol, and exogenous sorbitol feeding partially restores resistance of the antisense A6PR lines to A. alternata These findings indicate that sorbitol modulates resistance to A. alternata via the MdNLR16 protein that interacts with the fungal effector in a classic gene-for-gene manner in apple.


Assuntos
Alternaria/patogenicidade , Malus/metabolismo , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sorbitol/farmacologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Proteínas de Plantas/genética
3.
Fungal Genet Biol ; 135: 103291, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698077

RESUMO

Septins are highly conserved GTP-binding proteins that function in cell cytokinesis, polarity and morphogenesis. To evaluate the roles of these proteins in inoculum health and disease, mutants deleted for each of five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, and Cdc100) were characterized in the ascomycete Cochliobolus heterostrophus for ability to develop asexual and sexual spores and for virulence to the host maize. Strains deleted for CDC3, CDC10, CDC11, and CDC12 genes showed significant changes in hyphal growth, and in development of conidia and ascospores compared to the wild-type strain. Conidia had dramatically reduced numbers of septa and rates of germination, while ascospore development was blocked in the meiotic process. Although asci were produced, wild-type ascospores were not. When equal numbers of conidia from wild type and mutants were used to inoculate maize, cdc10 mutants showed reduced virulence compared to the wild-type strain and other mutants. This reduced virulence was demonstrated to be correlated with lower germination rate of cdc10 mutant conidia. When adjusted for germination rate, virulence was equivalent to the wild-type strain. Double mutants (cdc3cdc10, cdc3cdc11) showed augmented reduced growth phenotypes. cdc100 mutants were wild type in all assays. Taken together, these findings indicate that all four conserved septin proteins play a major role in reproductive propagule formation and that mutants with deletions of CDC10 are reduced in virulence to the host maize.


Assuntos
Bipolaris/crescimento & desenvolvimento , Bipolaris/patogenicidade , Proteínas Fúngicas/metabolismo , Septinas/metabolismo , Zea mays/microbiologia , Bipolaris/genética , Proteínas Fúngicas/genética , Septinas/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência/genética
4.
Phytopathology ; 110(12): 2014-2016, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689897

RESUMO

The heterothallic ascomycete Setosphaeria turcica (anamorph Exserohilum turcicum) causes northern corn leaf blight, which results in devastating yield losses and a reduction in feed value. Although genome sequences of two model strains of the pathogen are available (https://mycocosm.jgi.doe.gov/mycocosm/home), previous drafts were assembled using short read technologies, making evolutionary and genetic linkage inferences difficult. Here, race 23N of S. turcica strain Et28A was sequenced again using Illumina HiSeq and PacBio Sequel technologies, and assembled to approximately 43,480,261 bp on 30 scaffolds. In all, 13,183 protein-coding genes were predicted, 13,142 of them were well annotated. This S. turcica genome resource is important for understanding the genetics behind pathogen evolution and infection mechanisms.


Assuntos
Ascomicetos , Zea mays , Ascomicetos/genética , Ligação Genética , Doenças das Plantas
5.
PLoS Genet ; 13(9): e1006981, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892488

RESUMO

The filamentous fungus Chromocrea spinulosa (Trichoderma spinulosum) exhibits both self-fertile (homothallic) and self-sterile (heterothallic) sexual reproductive behavior. Self-fertile strains produce progeny cohorts that are 50% homothallic, 50% heterothallic. Heterothallic progeny can mate only with homothallic strains, and progeny also segregate 50% homothallic, 50% heterothallic. Sequencing of the mating type (MAT) region of homothallic and heterothallic strains revealed that both carry an intact MAT1-1 locus with three MAT1-1 genes (MAT1-1-1, MAT1-1-2, MAT1-1-3), as previously described for the Sordariomycete group of filamentous fungi. Homothallic strains, however, have a second version of MAT with the MAT1-2 locus genetically linked to MAT1-1. In this version, the MAT1-1-1 open reading frame is split into a large and small fragment and the truncated ends are bordered by 115bp direct repeats (DR). The MAT1-2-1 gene and additional sequences are inserted between the repeats. To understand the mechanism whereby C. spinulosa can exhibit both homothallic and heterothallic behavior, we utilized molecular manipulation to delete one of the DRs from a homothallic strain and insert MAT1-2 into a heterothallic strain. Mating assays indicated that: i) the DRs are key to homothallic behavior, ii) looping out of MAT1-2-1 via intra-molecular homologous recombination between the DRs in self-fertile strains results in two nuclear types in an individual (one carrying both MAT1-1 and MAT1-2 and one carrying MAT1-1 only), iii) self-fertility is achieved by inter-nuclear recognition between these two nuclear types before meiosis, iv) the two types of nuclei are in unequal proportion, v) having both an intact MAT1-1-1 and MAT1-2-1 gene in a single nucleus is not sufficient for self-fertility, and vi) the large truncated MAT1-1-1 fragment is expressed. Comparisons with MAT regions of Trichoderma reesei and Trichoderma virens suggest that several crossovers between misaligned parental MAT chromosomes may have led to the MAT architecture of homothallic C. spinulosa.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Trichoderma/genética , Núcleo Celular/genética , Citoplasma/genética , Fertilidade/genética , Meiose/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Trichoderma/crescimento & desenvolvimento
6.
Mol Plant Microbe Interact ; 31(11): 1154-1165, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29792566

RESUMO

The Southern corn leaf blight (SCLB) epidemic of 1970 devastated fields of T-cytoplasm corn planted in monoculture throughout the eastern United States. The epidemic was driven by race T, a previously unseen race of Cochliobolus heterostrophus. A second fungus, Phyllosticta zeae-maydis, with the same biological specificity, appeared coincidentally. Race T produces T-toxin, while Phyllosticta zeae-maydis produces PM-toxin, both host-selective polyketide toxins necessary for supervirulence. The present abundance of genome sequences offers an opportunity to tackle the evolutionary origins of T- and PM- toxin biosynthetic genes, previously thought unique to these species. Using the C. heterostrophus genes as probes, we identified orthologs in six additional Dothideomycete and three Eurotiomycete species. In stark contrast to the genetically fragmented race T Tox1 locus that encodes these genes, all newly found Tox1-like genes in other species reside at a single collinear locus. This compact arrangement, phylogenetic analyses, comparisons of Tox1 protein tree topology to a species tree, and Tox1 gene characteristics suggest that the locus is ancient and that some species, including C. heterostrophus, gained Tox1 by horizontal gene transfer. C. heterostrophus and Phyllosticta zeae-maydis did not exchange Tox1 DNA at the time of the SCLB epidemic, but how they acquired Tox1 remains uncertain. The presence of additional genes in Tox1-like clusters of other species, although not in C. heterostrophus and Phyllosticta zeae-maydis, suggests that the metabolites produced differ from T- and PM-toxin.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/metabolismo , Evolução Biológica , Proteínas Fúngicas/metabolismo , Família Multigênica , Mutação , Micotoxinas/genética , Filogenia , Folhas de Planta/microbiologia
7.
Phytopathology ; 108(6): 780-788, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29318912

RESUMO

Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B824; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.


Assuntos
DNA Fúngico/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único/genética , Verticillium/genética , Irã (Geográfico)
8.
Phytopathology ; 108(2): 254-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28952420

RESUMO

Generating effective and stable strategies for resistance breeding requires an understanding of the genetics of host-pathogen interactions and the implications for pathogen dynamics and evolution. Setosphaeria turcica causes northern leaf blight (NLB), an important disease of maize for which major resistance genes have been deployed. Little is known about the evolutionary dynamics of avirulence (AVR) genes in S. turcica. To test the hypothesis that there is a genetic association between avirulence and in vitro development traits, we (i) created a genetic map of S. turcica, (ii) located candidate AVRHt1 and AVRHt2 regions, and (iii) identified genetic regions associated with several in vitro development traits. A cross was generated between a race 1 and a race 23N strain, and 221 progeny were isolated. Genotyping by sequencing was used to score 2,078 single-nucleotide polymorphism markers. A genetic map spanning 1,981 centimorgans was constructed, consisting of 21 linkage groups. Genetic mapping extended prior evidence for the location and identity of the AVRHt1 gene and identified a region of interest for AVRHt2. The genetic location of AVRHt2 colocalized with loci influencing radial growth and mycelial abundance. Our data suggest a trade-off between virulence on Ht1 and Ht2 and the pathogen's vegetative growth rate. In addition, in-depth analysis of the genotypic data suggests the presence of significant duplication in the genome of S. turcica.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Zea mays/microbiologia , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Ligação Genética , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Virulência
9.
Fungal Genet Biol ; 98: 23-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27876630

RESUMO

Based on genomic analysis, polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways account for biosynthesis of the majority of the secondary metabolites produced by the entomopathogenic fungus Metarhizium robertsii. To evaluate the contribution of these pathways to M. robertsii fitness and/or virulence, mutants deleted for mrpptA, the Sfp-type 4' phosphopantetheinyl transferase gene required for their activation were generated. ΔmrpptA strains were deficient in PKS and NRPS activity resulting in colonies that lacked the typical green pigment and failed to produce the nonribosomal peptides (destruxins, serinocylins, and the siderophores ferricrocin and metachelins) as well as the hybrid polyketide-peptides (NG-39x) that are all produced by the wild type (WT) M. robertsii. The ΔmrpptA colonies were also auxotrophic for lysine. Two other mutant strains were generated: ΔmraarA, in which the α-aminoadipate reductase gene critical for lysine biosynthesis was disrupted, and ΔmrsidA, in which the L-ornithine N5-oxygenase gene that is critical for hydroxamate siderophore biosynthesis was disrupted. The phenotypes of these mutants were compared to those of ΔmrpptA to separate effects of the loss of lysine or siderophore production from the overall effect of losing all polyketide and non-ribosomal peptide production. Loss of lysine biosynthesis marginally increased resistance to H2O2 while it had little effect on the sensitivity to the cell wall disruptor sodium dodecyl sulfate (SDS) and no effect on sensitivity to iron deprivation. In contrast, combined loss of metachelin and ferricrocin through the inactivation of mrsidA resulted in mutants that were as hypersensitive or slightly more sensitive to H2O2, iron deprivation, and SDS, and were either identical or marginally higher in ΔmrpptA strains. In contrast to ΔmrpptA, loss of mrsidA did not completely abolish siderophore activity, which suggests the production of one or more non-hydroxamate iron-chelating compounds. Deletion of mrpptA, mrsidA, and mraarA reduced conidium production and conidia of a GFP-tagged ΔmrpptA strain displayed a longer germination delay than WT on insect cuticles, a deficiency that was rescued by lysine supplementation. Compared with WT, ΔmrpptA strains displayed ∼19-fold reduction in virulence against Drosophila suzukii. In contrast, lysine auxotrophy and loss of siderophores accounted for ∼2 and ∼6-fold decreases in virulence, respectively. Deletion of mrpptA had no significant effect on growth inhibition of Bacillus cereus. Our results suggest that PKS and NRPS metabolism plays a significant role in M. robertsii virulence, depresses conidium production, and contributes marginally to resistance to oxidative stress and iron homeostasis, but has no significant antibacterial effect.


Assuntos
Proteínas Fúngicas/genética , Lisina/genética , Metarhizium/genética , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Animais , Drosophila/microbiologia , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Lisina/biossíntese , Metarhizium/metabolismo , Metarhizium/patogenicidade , Mutação , Estresse Oxidativo/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Metabolismo Secundário/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
10.
Fungal Genet Biol ; 98: 46-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27919652

RESUMO

A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates.


Assuntos
Cromossomos Fúngicos/genética , Proteínas Fúngicas/genética , Fusarium/genética , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Cariotipagem , Solanum lycopersicum/microbiologia , Filogenia , Doenças das Plantas/genética
11.
PLoS Genet ; 9(1): e1003233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23357949

RESUMO

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.


Assuntos
Ascomicetos/genética , Peptídeo Sintases/genética , Doenças das Plantas , Policetídeo Sintases/genética , Polimorfismo de Nucleotídeo Único/genética , Ascomicetos/patogenicidade , Sequência de Bases , Evolução Molecular , Variação Genética , Genoma Fúngico , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Virulência/genética
12.
Mol Plant Microbe Interact ; 28(10): 1130-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26168137

RESUMO

The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.


Assuntos
Ascomicetos , Proteínas Fúngicas/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sideróforos/metabolismo , Zea mays/microbiologia , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , L-Aminoadipato-Semialdeído Desidrogenase/genética , L-Aminoadipato-Semialdeído Desidrogenase/metabolismo , Mutação , Micotoxinas/metabolismo , Estresse Oxidativo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Fenótipo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Esporos Fúngicos , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Virulência
13.
Mol Plant Microbe Interact ; 27(8): 793-808, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24762221

RESUMO

Iron is an essential nutrient and prudent iron acquisition and management are key traits of a successful pathogen. Fungi use nonribosomally synthesized secreted iron chelators (siderophores) or reductive iron assimilation (RIA) mechanisms to acquire iron in a high affinity manner. Previous studies with the maize pathogen Cochliobolus heterostrophus identified two genes, NPS2 and NPS6, encoding different nonribosomal peptide synthetases responsible for biosynthesis of intra- and extracellular siderophores, respectively. Deletion of NPS6 results in loss of extracellular siderophore biosynthesis, attenuated virulence, hypersensitivity to oxidative and iron-depletion stress, and reduced asexual sporulation, while nps2 mutants are phenotypically wild type in all of these traits but defective in sexual spore development when NPS2 is missing from both mating partners. Here, it is reported that nps2nps6 mutants have more severe phenotypes than both nps2 and nps6 single mutants. In contrast, mutants lacking the FTR1 or FET3 genes encoding the permease and ferroxidase components, respectively, of the alternate RIA system, are like wild type in all of the above phenotypes. However, without supplemental iron, combinatorial nps6ftr1 and nps2nps6ftr1 mutants are less virulent, are reduced in growth, and are less able to combat oxidative stress and to sporulate asexually, compared with nps6 mutants alone. These findings demonstrate that, while the role of RIA in metabolism and virulence is overshadowed by that of extracellular siderophores as a high-affinity iron acquisition mechanism in C. heterostrophus, it functions as a critical backup for the fungus.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Ferro/farmacologia , Deficiências de Ferro , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oxirredução , Estresse Oxidativo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Sideróforos/isolamento & purificação , Sideróforos/metabolismo , Esporos Fúngicos , Virulência , Zea mays/citologia
14.
BMC Genomics ; 15: 536, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24973942

RESUMO

BACKGROUND: Cochliobolus heterostrophus is a dothideomycete that causes Southern Corn Leaf Blight disease. There are two races, race O and race T that differ by the absence (race O) and presence (race T) of ~ 1.2-Mb of DNA encoding genes responsible for the production of T-toxin, which makes race T much more virulent than race O. The presence of repetitive elements in fungal genomes is considered to be an important source of genetic variability between different species. RESULTS: A detailed analysis of class I and II TEs identified in the near complete genome sequence of race O was performed. In total in race O, 12 new families of transposons were identified. In silico evidence of recent activity was found for many of the transposons and analyses of expressed sequence tags (ESTs) demonstrated that these elements were actively transcribed. Various potentially active TEs were found near coding regions and may modify the expression and structure of these genes by acting as ectopic recombination sites. Transposons were found on scaffolds carrying polyketide synthase encoding genes, responsible for production of T-toxin in race T. Strong evidence of ectopic recombination was found, demonstrating that TEs can play an important role in the modulation of genome architecture of this species. The Repeat Induced Point mutation (RIP) silencing mechanism was shown to have high specificity in C. heterostrophus, acting only on transposons near coding regions. CONCLUSIONS: New families of transposons were identified. In C. heterostrophus, the RIP silencing mechanism is efficient and selective. The co-localization of effector genes and TEs, therefore, exposes those genes to high rates of point mutations. This may accelerate the rate of evolution of these genes, providing a potential advantage for the host. Additionally, it was shown that ectopic recombination promoted by TEs appears to be the major event in the genome reorganization of this species and that a large number of elements are still potentially active. So, this study provides information about the potential impact of TEs on the evolution of C. heterostrophus.


Assuntos
Ascomicetos/genética , Elementos de DNA Transponíveis/genética , Genoma Fúngico , Sequência de Aminoácidos , Evolução Biológica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Micotoxinas/genética , Alinhamento de Sequência , Transcrição Gênica
15.
Fungal Genet Biol ; 70: 113-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25080135

RESUMO

Cochliobolus heterostrophus Vel2 and Vos1, members of the velvet family of proteins, play crucial roles in sexual and asexual development as reflected by deletion mutant and overexpression strain phenotypes. vel2 and vos1vel2 mutants are female sterile. Pseudothecia from vel2 or vos1 mutant crosses to an albino wild-type tester strain produce asci, however no full tetrads are found in these crosses, in contrast to crosses between wild-type strains which typically yield asci with a full complement of ascospores. In addition, none of the progeny from crosses of vel2 or vos1 mutants to wild-type mating testers is mutant, thus vos1 and vel2 ascospores are unable to survive meiosis. vos1vel2 double mutants are also female sterile like vel2 single mutants, however, asci in pseudothecia formed in crosses to wild-type testers are devoid of ascospores. Vel2 and Vos1 negatively regulate production of asexual spores, but positively regulate their morphology. vel2 and vos1 single mutant conidia vary in size, in septum number, septum position in the spore, and in germination rate, and are more sensitive to oxidative and thermal stresses compared to wild-type conidia. Trehalose amounts are decreased in single mutants, supporting previous findings that this disaccharide is required for conidium health.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Zea mays/microbiologia , Mutação , Reprodução Assexuada , Esporos Fúngicos/fisiologia , Estresse Fisiológico
16.
PLoS Pathog ; 8(2): e1002542, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22383877

RESUMO

LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H(2)O(2). Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.


Assuntos
Ascomicetos , Genes Fúngicos/fisiologia , Micotoxinas/biossíntese , Estresse Oxidativo/genética , Virulência/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Clonagem Molecular , Regulação Fúngica da Expressão Gênica , Melaninas/metabolismo , Micotoxinas/genética , Micotoxinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reprodução Assexuada/genética , Zea mays/microbiologia
17.
PLoS Pathog ; 8(12): e1003037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236275

RESUMO

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cromossomos Fúngicos/genética , Evolução Molecular , Genes Fúngicos/fisiologia , Doenças das Plantas/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos/metabolismo , Elementos de DNA Transponíveis/fisiologia , Estresse Oxidativo/genética , Doenças das Plantas/microbiologia , Mutação Puntual
18.
Mol Plant Microbe Interact ; 26(12): 1473-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23980626

RESUMO

The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the host, compared with the WT.


Assuntos
Ascomicetos/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Zea mays/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Biologia Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Mutação , Oxirredução , Estresse Oxidativo , Filogenia , Sideróforos/metabolismo , Fatores de Transcrição/genética , Virulência
19.
Fungal Genet Biol ; 61: 158-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012822

RESUMO

Exserohilum rostratum, also known as Setosphaeria rostrata caused an outbreak of meningitis in 2012. S. rostrata is known as a minor pathogen of grasses and a member of the Dothideomycetes, a group that includes saprobes as well as mild to aggressive plant pathogens. A few taxa in this group, such as E. rostratum and Cochliobolus lunatus (Curvularia lunata) can be human pathogens, in favorable circumstances. Fortunately, human disease caused by E. rostratum is rare. However, the increasing number of formerly inconsequential fungi surfacing as significant pathogens demands efforts to identify determinants of crossover pathogenicity in general, and S. rostrata in particular. Very few genetic and molecular data are available for S. rostrata. The first genome sequence for any species in the genus Setosphaeria (Setosphaeria turcica) was published this year. The literature to date related to virulence determinants of S. rostrata and S. turcica to plants and a summary of S. turcica genome features that may inform future studies with the human pathogen, S. rostrata, are presented.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Biologia Computacional , Fatores de Virulência/genética
20.
Phytopathology ; 103(6): 641-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23384859

RESUMO

Setosphaeria turcica, a hemibiotrophic pathogenic dothideomycete, is the causal agent of Northern Leaf Blight of maize, which periodically causes significant yield losses worldwide. To explore molecular mechanisms of fungal pathogenicity and virulence to the host, an efficient targeted gene knockout transformation system using Agrobacterium tumefaciens was established with field collected strains. The starting materials, incubation time, induction medium type, Agrobacterium cell density, and method of co-incubation were optimized for deletion of 1,3,8-trihydroxynaphthalene reductase, a gene in the melanin biosynthesis pathway, as a test case. Four additional genes were deleted in two different S. turcica field isolates to confirm robustness of the method. One of these mutant strains was reduced in virulence compared with the wild-type strain when inoculated on susceptible maize. Transformation efficiency was ≈20 ± 3 transformants per 1× 10(6) germlings and homologous recombination efficiency was 33.3 to 100%.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Deleção de Genes , Zea mays/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA