Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell ; 34(9): 3214-3232, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35689625

RESUMO

Fungal interactions with plant roots, either beneficial or detrimental, have a crucial impact on agriculture and ecosystems. The cosmopolitan plant pathogen Fusarium oxysporum (Fo) provokes vascular wilts in more than a hundred different crops. Isolates of this fungus exhibit host-specific pathogenicity, which is conferred by lineage-specific Secreted In Xylem (SIX) effectors encoded on accessory genomic regions. However, such isolates also can colonize the roots of other plants asymptomatically as endophytes or even protect them against pathogenic strains. The molecular determinants of endophytic multihost compatibility are largely unknown. Here, we characterized a set of Fo candidate effectors from tomato (Solanum lycopersicum) root apoplastic fluid; these early root colonization (ERC) effectors are secreted during early biotrophic growth on main and alternative plant hosts. In contrast to SIX effectors, ERCs have homologs across the entire Fo species complex as well as in other plant-interacting fungi, suggesting a conserved role in fungus-plant associations. Targeted deletion of ERC genes in a pathogenic Fo isolate resulted in reduced virulence and rapid activation of plant immune responses, while ERC deletion in a nonpathogenic isolate led to impaired root colonization and biocontrol ability. Strikingly, some ERCs contribute to Fo infection on the nonvascular land plant Marchantia polymorpha, revealing an evolutionarily conserved mechanism for multihost colonization by root infecting fungi.


Assuntos
Fusarium , Solanum lycopersicum , Ecossistema , Doenças das Plantas
2.
Nature ; 527(7579): 521-4, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503056

RESUMO

For more than a century, fungal pathogens and symbionts have been known to orient hyphal growth towards chemical stimuli from the host plant. However, the nature of the plant signals as well as the mechanisms underlying the chemotropic response have remained elusive. Here we show that directed growth of the soil-inhabiting plant pathogen Fusarium oxysporum towards the roots of the host tomato (Solanum lycopersicum) is triggered by the catalytic activity of secreted class III peroxidases, a family of haem-containing enzymes present in all land plants. The chemotropic response requires conserved elements of the fungal cell integrity mitogen-activated protein kinase (MAPK) cascade and the seven-pass transmembrane protein Ste2, a functional homologue of the Saccharomyces cerevisiae sex pheromone α receptor. We further show that directed hyphal growth of F. oxysporum towards nutrient sources such as sugars and amino acids is governed by a functionally distinct MAPK cascade. These results reveal a potentially conserved chemotropic mechanism in root-colonizing fungi, and suggest a new function for the fungal pheromone-sensing machinery in locating plant hosts in a complex environment such as the soil.


Assuntos
Fusarium/metabolismo , Interações Hospedeiro-Patógeno , Peroxidases/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Tropismo/fisiologia , Catálise , Fusarium/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Solanum lycopersicum/enzimologia , Sistema de Sinalização das MAP Quinases , Fator de Acasalamento , Peptídeos/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Receptores de Fator de Acasalamento/química
3.
New Phytol ; 224(4): 1600-1612, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31364172

RESUMO

Soil-inhabiting fungal pathogens use chemical signals to locate and colonise the host plant. In the vascular wilt fungus Fusarium oxysporum, hyphal chemotropism towards tomato roots is triggered by secreted plant peroxidases (Prx), which catalyse the reductive cleavage of reactive oxygen species (ROS). Here we show that this chemotropic response requires the regulated synthesis of ROS by the conserved fungal NADPH oxidase B (NoxB) complex, and their transformation into hydrogen peroxide (H2 O2 ) by superoxide dismutase (SOD). Deletion of NoxB or the regulatory subunit NoxR, or pharmacological inhibition of SOD, specifically abolished chemotropism of F. oxysporum towards Prx gradients. Addition of isotropic concentrations of H2 O2 rescued chemotropic growth in the noxBΔ and noxRΔ mutants, but not in a mutant lacking the G protein-coupled receptor Ste2. Prx-triggered rapid Nox- and Ste2-dependent phosphorylation of the cell wall integrity mitogen-activated protein kinase (CWI MAPK) Mpk1, an essential component of the chemotropic response. These results suggest that Ste2 and the CWI MAPK cascade function downstream of NoxB in Prx chemosensing. Our findings reveal a new role for Nox enzymes in directed hyphal growth of a filamentous pathogen towards its host and might be of broad interest for chemotropic interactions between plants and root-colonising fungi.


Assuntos
Quimiotaxia , Fusarium/fisiologia , NADPH Oxidases/farmacologia , Solanum lycopersicum/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Mutação , NADPH Oxidases/metabolismo , Peroxidases/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Semin Cell Dev Biol ; 57: 69-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27150623

RESUMO

The ability to grow as filamentous hyphae defines the lifestyle of fungi. Hyphae are exposed to a variety of chemical stimuli such as nutrients or signal molecules from mating partners and host organisms. How fungi sense and process this chemical information to steer hyphal growth is poorly understood. Saccharomyces cerevisiae and Neurospora crassa have served as genetic models for the identification of cellular components functioning in chemotropism. A recent study in the pathogen Fusarium oxysporum revealed distinct MAPK pathways governing hyphal growth towards nutrient sources and sex pheromones or plant signals, suggesting an unanticipated complexity of chemosensing during fungus-host interactions.


Assuntos
Fungos/patogenicidade , Hifas/fisiologia , Modelos Biológicos , Plantas/microbiologia , Microbiologia do Solo
5.
J Biol Chem ; 292(9): 3591-3602, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100777

RESUMO

During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central ß-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly6-Gln7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central ß-turn but instead required two conserved Trp1-Cys2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division.


Assuntos
Fatores Quimiotáticos/química , Proteínas Fúngicas/química , Fusarium/química , Feromônios/química , Ciclo Celular , Núcleo Celular/metabolismo , Cisteína/química , Genes Fúngicos Tipo Acasalamento , Peptídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/química , Transdução de Sinais , Relação Estrutura-Atividade , Triptofano/química
6.
Mol Plant Microbe Interact ; 31(10): 982-994, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29547355

RESUMO

Plant roots release complex mixtures of bioactive molecules, including compounds that affect the activity and modify the composition of the rhizosphere microbiome. In this work, we investigated the initial phase of the interaction between tomato and an effective biocontrol strain of Trichoderma harzianum (T22). We found that root exudates (RE), obtained from plants grown in a split-root system and exposed to various biotic and abiotic stress factors (wounding, salt, pathogen attack), were able to stimulate the growth and act as chemoattractants of the biocontrol fungus. On the other hand, some of the treatments did not result in an enhanced chemotropism on Fusarium oxysporum f. sp. lycopersici, indicating a mechanism that may be selective for nonpathogenic microbes. The involvement of peroxidases and oxylipins, both known to be released by roots in response to stress, was demonstrated by using RE fractions containing these molecules or their commercial purified analogs, testing the effect of an inhibitor, and characterizing the complex pattern of these metabolites released by tomato roots both locally and systemically.


Assuntos
Fusarium/efeitos dos fármacos , Exsudatos de Plantas/farmacologia , Raízes de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Trichoderma/efeitos dos fármacos , Quimiotaxia , Fusarium/fisiologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Esporos Fúngicos , Estresse Fisiológico , Trichoderma/fisiologia
7.
Nucleic Acids Res ; 43(21): e140, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26184878

RESUMO

As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência de RNA/normas , Software , Linhagem Celular , Interpretação Estatística de Dados , Humanos , Masculino , Neoplasias da Próstata/genética , Controle de Qualidade
8.
PLoS Pathog ; 10(9): e1004331, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188390

RESUMO

In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Imunidade Inata/imunologia , Fragmentos de Peptídeos/imunologia , Imunidade Vegetal/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Arabidopsis/genética , Western Blotting , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Reconhecimento de Padrão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais
9.
New Phytol ; 209(3): 1135-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26487566

RESUMO

The maize pathogenic fungus Ustilago maydis experiences endoplasmic reticulum (ER) stress during plant colonization and relies on the unfolded protein response (UPR) to cope with this stress. We identified the U. maydis co-chaperone, designated Dnj1, as part of this conserved cellular response to ER stress. ∆dnj1 cells are sensitive to the ER stressor tunicamycin and display a severe virulence defect in maize infection assays. A dnj1 mutant allele unable to stimulate the ATPase activity of chaperones phenocopies the null allele. A Dnj1-mCherry fusion protein localizes in the ER and interacts with the luminal chaperone Bip1. The Fusarium oxysporum Dnj1 ortholog contributes to the virulence of this fungal pathogen in tomato plants. Unlike the human ortholog, F. oxysporum Dnj1 partially rescues the virulence defect of the Ustilago dnj1 mutant. By enabling the fungus to restore ER homeostasis and maintain a high secretory activity, Dnj1 contributes to the establishment of a compatible interaction with the host. Dnj1 orthologs are present in many filamentous fungi, but are absent in budding and fission yeasts. We postulate a conserved and essential role during virulence for this class of co-chaperones.


Assuntos
Sequência Conservada , Chaperonas Moleculares/metabolismo , Ustilago/metabolismo , Ustilago/patogenicidade , Zea mays/microbiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Virulência/efeitos dos fármacos
10.
Mol Plant Microbe Interact ; 28(2): 167-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25317667

RESUMO

Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Trichoderma/metabolismo , Clonagem Molecular , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Controle Biológico de Vetores , Plantas/genética , Plantas/metabolismo
11.
Plant Cell ; 24(9): 3805-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22968717

RESUMO

Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fusarium/fisiologia , Ferro/metabolismo , Doenças das Plantas/imunologia , Solanum lycopersicum/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase , Solanum lycopersicum/microbiologia , Masculino , Camundongos , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Rizosfera , Alinhamento de Sequência , Deleção de Sequência , Sideróforos/genética , Sideróforos/metabolismo , Virulência
12.
Methods Mol Biol ; 2659: 73-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249886

RESUMO

Fungal phytopathogens induce a variety of pathogenicity symptoms on their hosts. The soilborne vascular wilt pathogen Fusarium oxysporum infects roots of more than 150 different crop species. Initial colonization stages are asymptomatic, likely representing a biotrophic phase of infection, followed by a necrotrophic switch after vascular colonization which results in blockage of the plant xylem and killing of the host. Live-cell microscopy techniques have been successfully employed to study interaction events during fungal colonization of root tissues. This technique is widely used to track fungal development during disease progression. Here, we describe a well-established protocol for generation and screening of fluorescently tagged F. oxysporum transformants, as well as for live-cell imaging of the early colonization stages of F. oxysporum on tomato (Solanum lycopersicum) seedlings. The presented experimental design and techniques involved are also applicable to other root infecting fungi.


Assuntos
Fusarium , Solanum lycopersicum , Doenças das Plantas/microbiologia , Virulência
13.
Nat Prod Res ; : 1-5, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395452

RESUMO

Fusaric acid (FA), a picolinic acid derivative, is a natural substance produced by a wide variety of fungal plant pathogens belonging to the Fusarium genus. As a metabolite, fusaric acid exerts several biological activities including metal chelation, electrolyte leakage, repression of ATP synthesis, and direct toxicity on plants, animals and bacteria. Prior studies on the structure of fusaric acid revealed a co-crystal dimeric adduct between FA and 9,10-dehydrofusaric acid. During an ongoing search for signaling genes differentially regulating FA production in the fungal pathogen Fusarium oxysporum (Fo), we found that mutants lacking pheromone expression have an increased production of FA compared to the wild type strain. Noteworthy, crystallographic analysis of FA extracted from Fo culture supernatants showed that crystals are formed by a dimeric form of two FA molecules (1:1 molar stoichiometry). Overall, our results suggest that pheromone signaling in Fo is required to regulate the synthesis of fusaric acid.

14.
mBio ; 14(2): e0028523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36861989

RESUMO

Mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes in eukaryotes. In fungal pathogens, conserved MAPK pathways control key virulence functions such as infection-related development, invasive hyphal growth, or cell wall remodeling. Recent findings suggest that ambient pH acts as a key regulator of MAPK-mediated pathogenicity, but the underlying molecular events are unknown. Here, we found that in the fungal pathogen Fusarium oxysporum, pH controls another infection-related process, hyphal chemotropism. Using the ratiometric pH sensor pHluorin we show that fluctuations in cytosolic pH (pHc) induce rapid reprogramming of the three conserved MAPKs in F. oxysporum, and that this response is conserved in the fungal model organism Saccharomyces cerevisiae. Screening of a subset of S. cerevisiae mutants identified the sphingolipid-regulated AGC kinase Ypk1/2 as a key upstream component of pHc-modulated MAPK responses. We further show that acidification of the cytosol in F. oxysporum leads to an increase of the long-chain base (LCB) sphingolipid dihydrosphingosine (dhSph) and that exogenous addition of dhSph activates Mpk1 phosphorylation and chemotropic growth. Our results reveal a pivotal role of pHc in the regulation of MAPK signaling and suggest new ways to target fungal growth and pathogenicity. IMPORTANCE Fungal phytopathogens cause devastating losses in global agriculture. All plant-infecting fungi use conserved MAPK signaling pathways to successfully locate, enter, and colonize their hosts. In addition, many pathogens also manipulate the pH of the host tissue to increase their virulence. Here, we establish a functional link between cytosolic pH (pHc) and MAPK signaling in the control of pathogenicity in the vascular wilt fungal pathogen Fusarium oxysporum. We demonstrate that fluctuations in pHc cause rapid reprogramming of MAPK phosphorylation, which directly impacts key processes required for infection, such as hyphal chemotropism and invasive growth. Targeting pHc homeostasis and MAPK signaling can thus open new ways to combat fungal infection.


Assuntos
Proteínas Fúngicas , Saccharomyces cerevisiae , Virulência , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia
15.
Toxins (Basel) ; 15(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668870

RESUMO

Fusaric acid (FA) is one of the first secondary metabolites isolated from phytopathogenic fungi belonging to the genus Fusarium. This molecule exerts a toxic effect on plants, rhizobacteria, fungi and animals, and it plays a crucial role in both plant and animal pathogenesis. In plants, metal chelation by FA is considered one of the possible mechanisms of action. Here, we evaluated the effect of different nitrogen sources, iron content, extracellular pH and cellular signalling pathways on the production of FA siderophores by the pathogen Fusarium oxysporum (Fol). Our results show that the nitrogen source affects iron chelating activity and FA production. Moreover, alkaline pH and iron limitation boost FA production, while acidic pH and iron sufficiency repress it independent of the nitrogen source. FA production is also positively regulated by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway and inhibited by the iron homeostasis transcriptional regulator HapX. Collectively, this study demonstrates that factors promoting virulence (i.e., alkaline pH, low iron availability, poor nitrogen sources and CWI MAPK signalling) are also associated with increased FA production in Fol. The obtained new insights on FA biosynthesis regulation can be used to prevent both Fol infection potential and toxin contamination.


Assuntos
Fusarium , Animais , Fusarium/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Fusárico/farmacologia , Ácido Fusárico/metabolismo , Fungos/metabolismo , Parede Celular/metabolismo , Ferro/metabolismo , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia
16.
J Fungi (Basel) ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547575

RESUMO

Mitogen-activated protein kinase (MAPK) signaling pathways control fundamental aspects of growth and development in fungi. In the soil-inhabiting ascomycete Fusarium oxysporum, which causes vascular wilt disease in more than a hundred crops, the MAPKs Fmk1 and Mpk1 regulate an array of developmental and virulence-related processes. The downstream components mediating these disparate functions are largely unknown. Here we find that the GATA-type transcription factor Pro1 integrates signals from both MAPK pathways to control a subset of functions, including quorum sensing, hyphal fusion and chemotropism. By contrast, Pro1 is dispensable for other downstream processes such as invasive hyphal growth and virulence, or response to cell wall stress. We further show that regulation of Pro1 activity by these upstream pathways occurs at least in part at the level of transcription. Besides the MAPK pathways, upstream regulators of Pro1 transcription also include the Velvet regulatory complex, the signaling protein Soft (Fso1) and the transcription factor Ste12 which was previously shown to act downstream of Fmk1. Collectively, our results reveal a role of Pro1 in integrating the outputs from different signaling pathways of F. oxysporum thereby mediating key developmental decisions in this important fungal pathogen.

17.
Pharmaceutics ; 14(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745740

RESUMO

During an infection, a single or multispecies biofilm can develop. Infections caused by non-dermatophyte molds, such as Fusarium spp. and yeasts, such as Candida spp., are particularly difficult to treat due to the formation of a mixed biofilm of the two species. Fusarium oxysporum is responsible for approximately 20% of human fusariosis, while Candida albicans is responsible for superficial mucosal and dermal infections and for disseminated bloodstream infections with a mortality rate above 40%. This study aims to investigate the interactions between C. albicans and F. oxysporum dual-species biofilm, considering variable formation conditions. Further, the ability of the WMR peptide, a modified version of myxinidin, to eradicate the mixed biofilm when used alone or in combination with fluconazole (FLC) was tested, and the efficacy of the combination of WMR and FLC at low doses was assessed, as well as its effect on the expression of some biofilm-related adhesin and hyphal regulatory genes. Finally, in order to confirm our findings in vivo and explore the synergistic effect of the two drugs, we utilized the Galleria mellonella infection model. We concluded that C. albicans negatively affects F. oxysporum growth in mixed biofilms. Combinatorial treatment by WMR and FLC significantly reduced the biomass and viability of both species in mature mixed biofilms, and these effects coincided with the reduced expression of biofilm-related genes in both fungi. Our results were confirmed in vivo since the synergistic antifungal activity of WMR and FLC increased the survival of infected larvae and reduced tissue invasion. These findings highlight the importance of drug combinations as an alternative treatment for C. albicans and F. oxysporum mixed biofilms.

18.
Methods Mol Biol ; 2309: 105-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028682

RESUMO

Current knowledge on the mechanism of strigolactones (SLs) as signaling molecules during specific interactions in the rhizosphere is mainly related to the control of germination of parasitic weed seeds and hyphal branching of arbuscular mycorrhizal fungi. Thus, the role of plant secreted SLs in regulating the growth and development of root-colonizing fungi still remains controversial. Fusarium oxysporum can sense and respond to extracellular signals through oriented germ tube emergence and redirectioning of hyphal growth toward gradients of nutrients, sex pheromones, or plant root exudates. However, chemoattractant activity of SLs against microorganisms living in the soil has not been tested so far. Here we propose a quantitative chemotropic assay to understand if and how soil fungi could sense gradients of SLs and SLs-like sources. In the example case of F. oxysporum, hyphae of fungal representative mutants preferentially grow toward the synthetic SL analog GR24; and this chemotropic response requires conserved elements of the fungal invasive growth mitogen-activated protein kinase (MAPK) cascade.


Assuntos
Fusarium/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Tropismo/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo
19.
Pathogens ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34684191

RESUMO

Endophytic fungi (EF) can enhance both plant growth and defense barriers against pests and pathogens, contributing to the reduction of chemical pesticides and fertilizers use in agriculture. Beauveria bassiana is an entomopathogenic fungus showing endophytism in several crops, often associated with a good capacity to limit the development of pests and disease agents. However, the diversity of the protective efficacy and plant response to different strains can be remarkable and needs to be carefully assessed for the successful and predictable use of these beneficial microorganisms. This study aims to select B. bassiana strains able to colonize tomato plants as endophytes as well as to control two important disease agents, Botrytis cinerea and Alternaria alternata, and the pest aphid, Macrosiphum euphorbiae. Nine wild-type isolates and one commercial strain were screened for endophytism, then further characterized for plant-growth promotion plus inhibition of disease development and pest infestation. Four isolates proved to have a good control activity against the biotic stressors tested, but only Bb716 was also able to promote plant growth. This work provides a simple workflow for the selection of beneficial EF, paving the way towards more effective use of B. bassiana in Integrate Pest Management (IPM) of tomato.

20.
Nat Commun ; 11(1): 5264, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067433

RESUMO

Soil-inhabiting fungal pathogens use chemical signals released by roots to direct hyphal growth towards the host plant. Whether other soil microorganisms exploit this capacity for their own benefit is currently unknown. Here we show that the endophytic rhizobacterium Rahnella aquatilis locates hyphae of the root-infecting fungal pathogen Fusarium oxysporum through pH-mediated chemotaxis and uses them as highways to efficiently access and colonize plant roots. Secretion of gluconic acid (GlcA) by R. aquatilis in the rhizosphere leads to acidification and counteracts F. oxysporum-induced alkalinisation, a known virulence mechanism, thereby preventing fungal infection. Genetic abrogation or biochemical inhibition of GlcA-mediated acidification abolished biocontrol activity of R. aquatilis and restored fungal infection. These findings reveal a new way by which bacterial endophytes hijack hyphae of a fungal pathogen in the soil to gain preferential access to plant roots, thereby protecting the host from infection.


Assuntos
Endófitos/fisiologia , Fusarium/fisiologia , Rahnella/fisiologia , Quimiotaxia , Endófitos/genética , Fusarium/genética , Hifas , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Plantas , Rahnella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA