Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 17080-17086, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36223602

RESUMO

Metal-semiconductor interfaces are ubiquitous in modern electronics. These quantum-confined interfaces allow for the formation of atomically thin polarizable metals and feature rich optical and optoelectronic phenomena, including plasmon-induced hot-electron transfer from metal to semiconductors. Here, we report on the metal-semiconductor interface formed during the intercalation of zero-valent atomic layers of tin (Sn) between layers of MoS2, a van der Waals layered material. We demonstrate that Sn interaction leads to the emergence of gap states within the MoS2 band gap and to corresponding plasmonic features between 1 and 2 eV (0.6-1.2 µm). The observed stimulation of the photoconductivity, as well as the extension of the spectral response from the visible regime toward the mid-infrared suggests that hot-carrier generation and internal photoemission take place.

2.
ACS Appl Mater Interfaces ; 14(3): 4612-4619, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35021011

RESUMO

Applying direct growth and deposition of optical surfaces holds great promise for the advancement of future nanophotonic technologies. Here, we report on a chemical vapor deposition (CVD) technique for depositing amorphous selenium (a-Se) spheres by desorption of selenium from Bi2Se3 and re-adsorption on the substrate. We utilize this process to grow scalable, large area Se spheres on several substrates and characterize their Mie-resonant response in the mid-infrared (MIR) spectral range. We demonstrate size-tunable Mie resonances spanning the 2-16 µm spectral range for single isolated resonators and large area ensembles. We further demonstrate strong absorption dips of up to 90% in ensembles of particles in a broad MIR range. Finally, we show that ultra-high-Q resonances arise in the case where Se Mie-resonators are coupled to low-loss epsilon-near-zero (ENZ) substrates. These findings demonstrate the enabling potential of amorphous Selenium as a versatile and tunable nanophotonic material that may open up avenues for on-chip MIR spectroscopy, chemical sensing, spectral imaging, and large area metasurface fabrication.

3.
Adv Mater ; 33(23): e2008779, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955078

RESUMO

The intercalation of layered compounds opens up a vast space of new host-guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2 resulting in a unique Cu-MoS2 hybrid. The new Cu-MoS2 hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high-performance MoS2 photodetectors, copper-enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104 A W-1 . The Cu-MoS2 hybrids hold promise for supplanting current night-vision technology with compact, advanced multicolor night vision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA