Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(5): 118, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632121

RESUMO

KEY MESSAGE: Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.


Assuntos
Near Miss , Oryza , Humanos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 14(1): 4283, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383610

RESUMO

The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.


Assuntos
Magnoliopsida , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Magnoliopsida/metabolismo , Epigenômica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Epigênese Genética , Federação Russa , Flores/fisiologia
3.
Front Plant Sci ; 14: 1249879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239221

RESUMO

Introduction: Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results: We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion: Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA