Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nature ; 600(7890): 664-669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937898

RESUMO

More than a decade of research on the electrocaloric (EC) effect has resulted in EC materials and EC multilayer chips that satisfy a minimum EC temperature change of 5 K required for caloric heat pumps1-3. However, these EC temperature changes are generated through the application of high electric fields4-8 (close to their dielectric breakdown strengths), which result in rapid degradation and fatigue of EC performance. Here we report a class of EC polymer that exhibits an EC entropy change of 37.5 J kg-1 K-1 and a temperature change of 7.5 K under 50 MV m-1, a 275% enhancement over the state-of-the-art EC polymers under the same field strength. We show that converting a small number of the chlorofluoroethylene groups in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer into covalent double bonds markedly increases the number of the polar entities and enhances the polar-nonpolar interfacial areas of the polymer. The polar phases in the polymer adopt a loosely correlated, high-entropy state with a low energy barrier for electric-field-induced switching. The polymer maintains performance for more than one million cycles at the low fields necessary for practical EC cooling applications, suggesting that this strategy may yield materials suitable for use in caloric heat pumps.

2.
Nature ; 598(7882): 590-596, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671167

RESUMO

Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains1-3. Here we report a general strategy for achieving high-performance solid polymer ion conductors by engineering of molecular channels. Through the coordination of copper ions (Cu2+) with one-dimensional cellulose nanofibrils, we show that the opening of molecular channels within the normally ion-insulating cellulose enables rapid transport of Li+ ions along the polymer chains. In addition to high Li+ conductivity (1.5 × 10-3 siemens per centimetre at room temperature along the molecular chain direction), the Cu2+-coordinated cellulose ion conductor also exhibits a high transference number (0.78, compared with 0.2-0.5 in other polymers2) and a wide window of electrochemical stability (0-4.5 volts) that can accommodate both the Li-metal anode and high-voltage cathodes. This one-dimensional ion conductor also allows ion percolation in thick LiFePO4 solid-state cathodes for application in batteries with a high energy density. Furthermore, we have verified the universality of this molecular-channel engineering approach with other polymers and cations, achieving similarly high conductivities, with implications that could go beyond safe, high-performance solid-state batteries.

3.
Soft Matter ; 20(26): 5153-5163, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895763

RESUMO

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer-Emmett-Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bend-and-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EA-TB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure.

4.
Nat Mater ; 21(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301475

RESUMO

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Assuntos
Polímeros , Água , Ânions , Troca Iônica , Íons , Membranas Artificiais , Polímeros/química , Água/química
5.
J Memb Sci ; 6782023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465550

RESUMO

We systematically reduce the cross-link density of a PA network based on m-phenylene diamine by substituting a fraction of the trifunctional trimesoyl chloride cross-linking agent with a difunctional isophthaloyl analog that promotes chain extension, in order to elucidate robust design cues for improving the polyamide (PA) separation layer in reverse osmosis (RO) membranes for desalination. Thin films of these model PA networks are fully integrated into a composite membrane and evaluated in terms of their water flux and salt rejection. By incorporating 15 mol % of the difunctional chain extender, we reduce the cross-link density of the network by a factor of two, which leads to an 80 % increase in the free or unreacted amine content. The resulting swelling of the PA network in liquid water increases by a factor of two accompanied by a 30 % increase in the salt passage through the membrane. Surprisingly, this leads to a 30 % decrease in the overall permeance of water through the membrane. This conundrum is resolved by quantifying the microscopic diffusion coefficient of water inside the PA network with quasi-elastic neutron scattering. In the highest and lowest cross-link density networks, water shows strong signatures of confined diffusion. At short length scales, the water exhibits a translational diffusion that is consistent with the jump-diffusion mechanism. This translational diffusion coefficient is approximately five times slower in the lowest cross-linked density network, consistent with the reduced water permeance. This is interpreted as water molecules interacting more strongly with the increased free amine content. Over longer length scales the water diffusion is confined, exhibiting mobility that is independent of length scale. The length scales of confinement from the quasi-elastic neutron scattering experiments at which this transition from confined to translational diffusion occurs is on the order of (5 to 6) Å, consistent with complementary X-ray scattering, small angle neutron scattering, and positron annihilation lifetime spectroscopy measurements. The confinement appears to come from heterogeneities in the average inter-atomic distances, suggesting that diffusion occurs by water bouncing between chains and occasionally sticking to the polar functional groups. The results obtained here are compared with similar studies of water diffusion through both rigid porous silicates and ion exchange membranes, revealing robust design cues for engineering high-performance RO membranes.

6.
J Am Chem Soc ; 144(3): 1313-1322, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029372

RESUMO

The emission of white light from a single material is atypical and is of interest for solid-state lighting applications. Broadband light emission has been observed in some layered perovskite derivatives, A2PbBr4 (A = R-NH3+), and correlates with static structural distortions corresponding to out-of-plane tilting of the lead bromide octahedra. While materials with different organic cations can yield distinct out-of-plane tilts, the underlying origin of the octahedral tilting remains poorly understood. Using high energy resolution (e.g., quasi-elastic) neutron scattering, this contribution details the rotational dynamics of the organic cations in A2PbBr4 materials where A = n-butylammonium (nBA), 1,8-diaminooctammonium (ODA), and 4-aminobutyric acid (GABA). The organic cation dynamics differentiate (nBA)2PbBr4 from (ODA)PbBr4 or (GABA)2PbBr4 in that the larger spatial extent of dynamics of nBA yields a larger effective cation radius. The larger effective volume of the nBA cation in (nBA)2PbBr4 yields a closer to ideal A-site geometry, preventing the out-of-plane tilt and broadband luminescence. In all three compounds, we observe hydrogen dynamics attributed to rotation of the ammonium headgroup and at a time scale faster than the white light photoluminescence studied by time-correlated single photon counting spectroscopy. This supports a previous assignment of the broadband emission as resulting from a single ensemble, such that the emissive excited state experiences many local structures faster than the emissive decay. The findings presented here highlight the role of the organic cation and its dynamics in hybrid organic-inorganic perovskites and white light emission.

7.
J Am Chem Soc ; 144(26): 11664-11675, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729771

RESUMO

Supported amines are a promising class of CO2 sorbents offering large uptake capacities and fast uptake rates. Among supported amines, poly(ethyleneimine) (PEI) physically impregnated in the mesopores of SBA-15 silica is widely used. Within these composite materials, the chain dynamics and morphologies of PEI strongly influence the CO2 capture performance, yet little is known about chain and macromolecule mobility in confined pores. Here, we probe the impact of the support-PEI interactions on the dynamics and structures of PEI at the support interface and the corresponding impact on CO2 uptake performance, which yields critical structure-property relationships. The pore walls of the support are grafted with organosilanes with different chemical end groups to differentiate interaction modes (spanning from strong attraction to repulsion) between the pore surface and PEI. Combinations of techniques, such as quasi-elastic neutron scattering (QENS), 1H T1-T2 relaxation correlation solid-state NMR, and molecular dynamics (MD) simulations, are used to comprehensively assess the physical properties of confined PEI. We hypothesized that PEI would have faster dynamics when subjected to less attractive or repulsive interactions. However, we discover that complex interfacial interactions resulted in complex structure-property relationships. Indeed, both the chain conformation of the surface-grafted chains and of the PEI around the surface influenced the chain mobility and CO2 uptake performance. By coupling knowledge of the dynamics and distributions of PEI with CO2 sorption performance and other characteristics, we determine that the macroscopic structures of the hybrid materials dictate the first rapid CO2 uptake, and the rate of CO2 sorption during the subsequent gradual uptake stage is determined by PEI chain motions that promote diffusive jumps of CO2 through PEI-packed domains.


Assuntos
Aziridinas , Polímeros , Adsorção , Aminas , Dióxido de Carbono/química , Polietilenoimina/química , Polímeros/química , Dióxido de Silício/química
8.
Chemphyschem ; 23(18): e202200219, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35676199

RESUMO

Ionic liquid mixed with poly(methyl methacrylate)-grafted Fe3 O4 nanoparticle aggregates at low particle concentrations was found to exhibit different dynamics and ionic conductivity than that of pure ionic liquid in our previous studies. In this work, we report on the quasi-elastic neutron scattering results of ionic liquid containing polymer-grafted Fe3 O4 nanoparticles at higher particle concentrations. The diffusivity of imidazolium (HMIM+ ) cations of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) in the presence of poly(methyl methacrylate)-grafted Fe3 O4 nanoparticles is discussed through the confinement. Analysis of the elastic incoherent structure factor revealed that the confinement radius decreased with the addition of grafted particles in HMIM-TFSI/solvent mixture. We propose the confinement that is induced by the high concentration of grafted particles shrinks the HMIM-TFSI restricted volume. We further conjecture that this enhanced diffusivity occurs as a result of the local ordering of cations within aggregates of poly(methyl methacrylate)-grafted Fe3 O4 nanoparticles.


Assuntos
Líquidos Iônicos , Nanopartículas , Cátions , Imidas/química , Líquidos Iônicos/química , Polímeros/química , Polimetil Metacrilato
9.
Biomacromolecules ; 23(8): 3165-3173, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767422

RESUMO

Stimuli-responsive structural proteins are emerging as promising biocompatible materials for a wide range of biological and nonbiological applications. To understand the physical properties of structural proteins and to replicate their performance in biosynthetic systems, there is a need to understand the molecular mechanisms and relationships that regulate their structure, dynamics, and properties. Here, we study the dynamics of a recombinant squid-inspired protein from Loligo vulgaris (Lv18) by elastic and quasielastic neutron scattering (QENS) to understand the connection between nanostructure, chain dynamics, and mechanical properties. Lv18 is a semicrystalline structural protein, which is plasticized by water above its glass transition temperature at 35 °C. Elastic scans revealed an increased protein chain mobility upon hydration, superimposed dynamic processes, and a decrease in dynamic transition temperatures. Further analysis by QENS revealed that while dry Lv18 protein dynamics are dominated by localized methyl group rotations, hydrated Lv18 dynamics are dominated by the confined diffusion of flexible chains within a ß-sheet nanocrystalline network (8 Å of confinement radius). Our findings establish a relationship between the segment block architecture of Lv18, the diffusive motions within the protein structure, and the mechanical properties of recombinant squid proteins, which will advance the molecular design of novel high-performance protein-inspired materials with tailored dynamics and mechanical properties.


Assuntos
Decapodiformes , Difração de Nêutrons , Animais , Difusão , Difração de Nêutrons/métodos , Nêutrons , Proteínas/química , Análise Espectral , Água/química
10.
J Chem Phys ; 154(15): 154903, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887940

RESUMO

Understanding the properties of water under either soft or hard confinement has been an area of great interest, but nanostructured amphiphilic polymers that provide a secondary confinement have garnered significantly less attention. Here, a series of statistical copolymers of 2-hydroxyethyl acrylate (HEA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM) are swollen to equilibrium in water to form nanostructured physically cross-linked hydrogels to probe the effect of soft confinement on the dynamics of water. Changing the composition of the copolymer from 10 to 21 mol. % FOSM decreases the average size of the assembled FOSM cross-link, but also the spacing between the cross-links in the hydrogels with the mean distance between the FOSM aggregates decreasing from 3.9 to 2.7 nm. The dynamics of water within the hydrogels were assessed with quasielastic neutron scattering. These hydrogels exhibit superior performance for inhibition of water crystallization on supercooling in comparison to analogous hydrogels with different hydrophilic copolymer chemistries. Despite the lower water crystallinity, the self-diffusion coefficient for these hydrogels from the copolymers of HEA and FOSM decreases precipitously below 260 K, which is a counter to the nearly temperature invariant water dynamics reported previously with an analogous hydrogel [Wiener et al., J. Phys. Chem. B 120, 5543 (2016)] that exhibits nearly temperature invariant dynamics to 220 K. These results point to chemistry dependent dynamics of water that is confined within amphiphilic hydrogels, where the interactions of water with the hydrophilic segments can qualitatively alter the temperature dependent dynamics of water in the supercooled state.

11.
Proc Natl Acad Sci U S A ; 115(43): E10049-E10058, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297413

RESUMO

The enhanced thermostability of thermophilic proteins with respect to their mesophilic counterparts is often attributed to the enthalpy effect, arising from strong interactions between protein residues. Intuitively, these strong interresidue interactions will rigidify the biomolecules. However, the present work utilizing neutron scattering and solution NMR spectroscopy measurements demonstrates a contrary example that the thermophilic cytochrome P450, CYP119, is much more flexible than its mesophilic counterpart, CYP101A1, something which is not apparent just from structural comparison of the two proteins. A mechanism to explain this apparent contradiction is that higher flexibility in the folded state of CYP119 increases its conformational entropy and thereby reduces the entropy gain during denaturation, which will increase the free energy needed for unfolding and thus stabilize the protein. This scenario is supported by thermodynamic data on the temperature dependence of unfolding free energy, which shows a significant entropic contribution to the thermostability of CYP119 and lends an added dimension to enhanced stability, previously attributed only to presence of aromatic stacking interactions and salt bridge networks. Our experimental data also support the notion that highly thermophilic P450s such as CYP119 may use a mechanism that partitions flexibility differently from mesophilic P450s between ligand binding and thermal stability.


Assuntos
Proteínas Arqueais/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Entropia , Espectroscopia de Ressonância Magnética/métodos , Desnaturação Proteica , Sulfolobus acidocaldarius/metabolismo , Temperatura , Termodinâmica
12.
Molecules ; 26(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577164

RESUMO

Many enzymes, particularly in one single family, with highly conserved structures and folds exhibit rather distinct substrate specificities. The underlying mechanism remains elusive, the resolution of which is of great importance for biochemistry, biophysics, and bioengineering. Here, we performed a neutron scattering experiment and molecular dynamics (MD) simulations on two structurally similar CYP450 proteins; CYP101 primarily catalyzes one type of ligands, then CYP2C9 can catalyze a large range of substrates. We demonstrated that it is the high density of salt bridges in CYP101 that reduces its structural flexibility, which controls the ligand access channel and the fluctuation of the catalytic pocket, thus restricting its selection on substrates. Moreover, we performed MD simulations on 146 different kinds of CYP450 proteins, spanning distinct biological categories including Fungi, Archaea, Bacteria, Protista, Animalia, and Plantae, and found the above mechanism generally valid. We demonstrated that, by fine changes of chemistry (salt-bridge density), the CYP450 superfamily can vary the structural flexibility of its member proteins among different biological categories, and thus differentiate their substrate specificities to meet the specific biological needs. As this mechanism is well-controllable and easy to be implemented, we expect it to be generally applicable in future enzymatic engineering to develop proteins of desired substrate specificities.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Eletricidade Estática , Sítios de Ligação , Biocatálise , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP2C9/química , Ligantes , Simulação de Dinâmica Molecular , Difração de Nêutrons , Conformação Proteica , Sais/química , Espalhamento de Radiação , Especificidade por Substrato
13.
Phys Chem Chem Phys ; 22(16): 9074-9085, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32297886

RESUMO

The intermolecular dynamics in the THz frequency range of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by a combined usage of inelastic neutron scattering (INS), Raman, and far-infrared (FIR) spectroscopies and the power spectrum calculated by molecular dynamics (MD) simulations. The collective dynamics of the simulated systems is also discussed by the calculation of time correlation functions of charge and mass currents that are projected onto acoustic- and optic-like motions. The INS and Raman measurements have been performed as a function of temperature in the glassy, crystalline, and liquid phases. The excess in the vibrational density of states over the expectation of the Debye theory, the so-called boson peak, is found in the INS and Raman spectra as a peak at ∼2 meV (∼16 cm-1) and also in the direct measurement of heat capacity at very low temperatures (4-20 K). This low-frequency vibration is incorporated into the curve fits of Raman, FIR, and MD data at room temperature. Fits of spectra from these different sources in the range below 100 cm-1 are consistently achieved with three components at ca. 25, 50, and 80 cm-1, but with distinct relative intensities among the different techniques. It is proposed as the collective nature of the lowest-frequency component and the anion-cation intermolecular vibration nature of the highest-frequency component. The MD results indicate that there is no clear distinction between acoustic and optic vibrations in the spectral range investigated in this work for the ionic liquids [N1114][NTf2] and [N1444][NTf2]. The analysis carried out here agrees in part, but not entirely, with other propositions in the literature, mainly from optical Kerr effect (OKE) and FIR spectroscopies, concerning the intermolecular dynamics of ionic liquids.

14.
Molecules ; 25(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936161

RESUMO

The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques (QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies. Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule's backbone and confined hydration water within the minor groove. Distinct effects were observed for cisplatin and Pd2Spm, the former having a predominant effect on DNA´s spine of hydration, whereas the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a drug´s mode of action, mediated by the hydration waters within its pharmacological target (DNA).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , DNA/química , DNA/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Metais/química , Metais/farmacologia , Difração de Nêutrons , Nêutrons , Conformação de Ácido Nucleico/efeitos dos fármacos , Paládio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Espermina/química , Água/química
15.
J Am Chem Soc ; 141(20): 8041-8046, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31074276

RESUMO

The development of models to describe structure and dynamics of nonaqueous electrolyte solutions is challenging, and experimental observations are needed to form a foundation. Here, neutron scattering is used to probe molecular dynamics in nonaqueous organic electrolytes. Two solutions were compared: one contained symmetrical electrolyte molecules prone to crystallize, and one contained desymmetrized electrolyte molecules preferring disordered states. For the latter, calorimetry and neutron data show that a disordered fluid persists to very low temperatures at high concentrations. Upon heating, localized cold crystallization occurs, leading to burst nucleation of microcrystalline solids within fluid phases. Our findings indicate molecular clustering and point to solvation inhomogeneities and molecular crowding in these concentrated fluids.


Assuntos
Anisóis/química , Eletrólitos/química , Soluções/química , Tiadiazóis/química , Varredura Diferencial de Calorimetria , Cristalização , Hidrocarbonetos Fluorados/química , Imidas/química , Transição de Fase , Espalhamento de Radiação , Termodinâmica
16.
Phys Rev Lett ; 123(15): 158003, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702322

RESUMO

The tracer diffusion coefficient of six different permanent gases in polymer-grafted nanoparticle (GNP) membranes, i.e., neat GNP constructs with no solvent, show a maximum as a function of the grafted chain length at fixed grafting density. This trend is reproduced for two different NP sizes and three different polymer chemistries. We postulate that nonmonotonic changes in local, segmental friction as a function of graft chain length (at fixed grafting density) must underpin these effects, and use quasielastic neutron scattering to probe the self-motions of polymer chains at the relevant segmental scale (i.e., sampling local friction or viscosity). These data, when interpreted with a jump diffusion model, show that, in addition to the speeding-up in local chain dynamics, the elementary distance over which segments hop is strongly dependent on graft chain length. We therefore conclude that transport modifications in these GNP layers, which are underpinned by a structural transition from a concentrated brush to semidilute polymer brush, are a consequence of both spatial and temporal changes, both of which are likely driven by the lower polymer densities of the GNPs relative to the neat polymer.

17.
Soft Matter ; 15(25): 5067-5083, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31183486

RESUMO

The molecular morphology and dynamics of conjugated polymers in the bulk solid state play a significant role in determining macroscopic charge transport properties. To understand this relationship, molecular dynamics (MD) simulations and quantum mechanical calculations are used to evaluate local electronic properties. In this work, we investigate the importance of system and simulation parameters, such as force fields and equilibration methods, when simulating amorphous poly(3-hexylthiophene) (P3HT), a model semiconducting polymer. An assessment of MD simulations for five different published P3HT force fields is made by comparing results to experimental wide-angle X-ray scattering (WAXS) and to a broad range of quasi-elastic neutron scattering (QENS) data. Moreover, an in silico analysis of force field parameters reveals that atomic partial charges and torsion potentials along the backbone and side chains have the greatest impact on structure and dynamics related to charge transport mechanisms in P3HT.

18.
Phys Chem Chem Phys ; 21(16): 8517-8528, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30957810

RESUMO

The single particle dynamics of water confined within two ordered mesoporous carbon matrices was investigated in the temperature range from 290 K to 170 K by quasielastic neutron scattering using three high resolution neutron spectrometers. Thus, it was possible to investigate the mobility of water confined in model hydrophobic cavities at the nanoscale. Models developed for the nanoscale dynamics of supercooled water and water confined within hydrophilic matrices were able to describe the collected data but remarkable differences with analogous silica confined matrices were observed in these carbon samples. A significant fraction of the water molecules was immobile on the nanosecond timescale, even at room temperature. As the temperature was lowered, the mobility of the water molecules slowed down, but the strongly non-Arrhenius behavior observed in bulk water and for fully hydrated hydrophilic confinement was absent, which indicates frustration of the hydrogen bond network formation. The obtained results were relevant for applications of mesoporous carbon materials.

19.
J Chem Phys ; 150(14): 144506, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981243

RESUMO

The competition between Coulomb and van der Waals interactions brings forth unique dynamic features and broad applications to ionic liquids. Herein, we present a combined calorimetric, X-ray diffraction, incoherent elastic, and quasi-elastic neutron scattering study, over a wide temperature range (180-340 K), of the relaxational dynamics of the liquid, supercooled liquid, crystalline, glassy, and glacial states of two model ionic liquids: tributylmethylammonium (a good glass-former) and butyltrimethylammonium (a good crystal-former) cations and the bis(trifluoromethanesulfonyl)imide anion. In both systems, we observed two distinct relaxation processes. The Q-dependence of the respective relaxation time shows that the α-process is diffusive, while the ß-process is modulated by the structure of the liquids.

20.
Phys Chem Chem Phys ; 20(44): 28019-28025, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383049

RESUMO

Confinement of water to nanoscale dimensions enables substantial supercooling through disruption of the hydrogen bonding network. However, there remain questions associated with the importance of the nature of the water-surface interactions relative to physical confinement defined by the pore geometry on the dynamics of supercooled water. Here, a simple route to tune the surface wetting properties through nitrogen doping of carbon is reported. This method leads to nearly indistinguishable mesopore sizes to enable separation of surface wettability and pore size effects. Quasielastic neutron scattering (QENS) is used to probe the proton dynamics of water confined within the mesopores with an average diameter of 4.85 ± 0.05 nm as a function of temperature from 267 K to 189 K. The motions of water in the mesopores follow jump-diffusion. For the temperatures examined, the diffusivity of water in the mesopores decreases with increasing nitrogen doping of the carbon framework. The activation energy associated with proton dynamics increases by approximately 30% with N-doping when compared to the undoped carbon surface, which is attributed to the enhanced surface wettability (favorable interactions between water and pore surface). This acts to provide an energy barrier for the water motions. This work suggests that the influence of surface chemistry on the dynamics of supercooled water confined in mesopores is less than the influence of nanopore size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA