Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 13(8): e1006969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806779

RESUMO

Otitis media (OM), inflammation of the middle ear (ME), is a common cause of conductive hearing impairment. Despite the importance of the disease, the aetiology of chronic and recurrent forms of middle ear inflammatory disease remains poorly understood. Studies of the human population suggest that there is a significant genetic component predisposing to the development of chronic OM, although the underlying genes are largely unknown. Using N-ethyl-N-nitrosourea mutagenesis we identified a recessive mouse mutant, edison, that spontaneously develops a conductive hearing loss due to chronic OM. The causal mutation was identified as a missense change, L972P, in the Nischarin (NISCH) gene. edison mice develop a serous or granulocytic effusion, increasingly macrophage and neutrophil rich with age, along with a thickened, inflamed mucoperiosteum. We also identified a second hypomorphic allele, V33A, with only modest increases in auditory thresholds and reduced incidence of OM. NISCH interacts with several proteins, including ITGA5 that is thought to have a role in modulating VEGF-induced angiogenesis and vascularization. We identified a significant genetic interaction between Nisch and Itga5; mice heterozygous for Itga5-null and homozygous for edison mutations display a significantly increased penetrance and severity of chronic OM. In order to understand the pathological mechanisms underlying the OM phenotype, we studied interacting partners to NISCH along with downstream signalling molecules in the middle ear epithelia of edison mouse. Our analysis implicates PAK1 and RAC1, and downstream signalling in LIMK1 and NF-κB pathways in the development of chronic OM.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Quinases Lim/metabolismo , Mutação de Sentido Incorreto , NF-kappa B/metabolismo , Otite Média/genética , Alelos , Animais , Mapeamento Cromossômico , Doença Crônica , Modelos Animais de Doenças , Orelha Média/metabolismo , Etilnitrosoureia/toxicidade , Feminino , Técnicas de Genotipagem , Heterozigoto , Homozigoto , Humanos , Receptores de Imidazolinas , Inflamação/genética , Integrina alfa6/genética , Integrina alfa6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinases Lim/genética , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Otite Média/metabolismo , Penetrância , Análise de Sequência de DNA , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(45): E9712-E9721, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078351

RESUMO

Elimination of filariasis requires a macrofilaricide treatment that can be delivered within a 7-day period. Here we have identified a synergy between the anthelmintic albendazole (ABZ) and drugs depleting the filarial endosymbiont Wolbachia, a proven macrofilaricide target, which reduces treatment from several weeks to 7 days in preclinical models. ABZ had negligible effects on Wolbachia but synergized with minocycline or rifampicin (RIF) to deplete symbionts, block embryogenesis, and stop microfilariae production. Greater than 99% Wolbachia depletion following 7-day combination of RIF+ABZ also led to accelerated macrofilaricidal activity. Thus, we provide preclinical proof-of-concept of treatment shortening using antibiotic+ABZ combinations to deliver anti-Wolbachia sterilizing and macrofilaricidal effects. Our data are of immediate public health importance as RIF+ABZ are registered drugs and thus immediately implementable to deliver a 1-wk macrofilaricide. They also suggest that novel, more potent anti-Wolbachia drugs under development may be capable of delivering further treatment shortening, to days rather than weeks, if combined with benzimidazoles.


Assuntos
Albendazol/farmacologia , Antibacterianos/farmacologia , Filariose/tratamento farmacológico , Wolbachia/efeitos dos fármacos , Animais , Benzimidazóis/farmacologia , Brugia Malayi/microbiologia , Sinergismo Farmacológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Minociclina/farmacologia , Rifampina/farmacologia
3.
PLoS Genet ; 7(10): e1002336, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028672

RESUMO

Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.


Assuntos
Orelha Média/metabolismo , Perda Auditiva/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Otite Média com Derrame/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vesícula/metabolismo , Vesícula/patologia , Líquidos Corporais/metabolismo , Hipóxia Celular/genética , Modelos Animais de Doenças , Orelha Média/efeitos dos fármacos , Orelha Média/patologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Perda Auditiva/etiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Nitroimidazóis/análise , Otite Média com Derrame/complicações , Ftalazinas/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/genética
4.
Curr Allergy Asthma Rep ; 13(5): 501-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23775349

RESUMO

Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.


Assuntos
Otite Média/imunologia , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Otite Média/genética , Otite Média/metabolismo , Otite Média/terapia , Recidiva , Transdução de Sinais , Receptores Toll-Like/imunologia
5.
Front Genet ; 10: 1327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32153623

RESUMO

Chronic otitis media with effusion (COME) is the most common cause of childhood hearing loss in the developed world. Underlying pathophysiology is not well understood, and in particular the factors that lead to the transition from acute to chronic inflammation. Here we present the first genome-wide transcript analysis of white blood cells in the effusion of children with COME. Analysis of microarray data for enriched pathways reveals upregulation of hypoxia pathways, which is confirmed using real-time PCR and determining VEGF protein titres. Other pathways upregulated in both mucoid and serous effusions include Toll-like receptor signaling, complement, and RANK-RANKL. Cytology reveals neutrophils and macrophages predominated in both serous and mucoid effusions, however, serous samples had higher lymphocyte and eosinophil differential counts, while mucoid samples had higher neutrophil differential counts. Transcript analysis indicates serous fluids have CD4+ and CD8+ T-lymphocyte, and NK cell signatures. Overall, our findings suggest that inflammation and hypoxia pathways are important in the pathology of COME, and targets for potential therapeutic intervention, and that mucoid and serous COME may represent different immunological responses.

6.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867321

RESUMO

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Assuntos
Filariose Linfática/tratamento farmacológico , Filariose Linfática/microbiologia , Macrolídeos/administração & dosagem , Macrolídeos/uso terapêutico , Oncocercose/tratamento farmacológico , Oncocercose/microbiologia , Wolbachia/fisiologia , Administração Oral , Animais , Modelos Animais de Doenças , Filariose Linfática/sangue , Feminino , Macrolídeos/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Oncocercose/sangue , Resultado do Tratamento , Tilosina/sangue , Tilosina/síntese química , Tilosina/química , Tilosina/uso terapêutico
7.
J Med Chem ; 62(5): 2521-2540, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30730745

RESUMO

A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.


Assuntos
Boro/farmacologia , Diterpenos/farmacologia , Filariose Linfática/tratamento farmacológico , Filaricidas/uso terapêutico , Oncocercose/tratamento farmacológico , Compostos Policíclicos/farmacologia , Wolbachia/efeitos dos fármacos , Wuchereria bancrofti/efeitos dos fármacos , Animais , Boro/química , Diterpenos/química , Filaricidas/farmacocinética , Filaricidas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Compostos Policíclicos/química , Pleuromutilinas
8.
Sci Rep ; 8(1): 5910, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651095

RESUMO

Filariasis is a global health problem targeted for elimination. Curative drugs (macrofilaricides) are required to accelerate elimination. Candidate macrofilaricides require testing in preclinical models of filariasis. The incidence of infection failures and high intra-group variation means that large group sizes are required for drug testing. Further, a lack of accurate, quantitative adult biomarkers results in protracted timeframes or multiple groups for endpoint analyses. Here we evaluate intra-vital ultrasonography (USG) to identify B. malayi in the peritonea of gerbils and CB.17 SCID mice and assess prognostic value in determining drug efficacy. USG operators, blinded to infection status, could detect intra-peritoneal filarial dance sign (ipFDS) with 100% specificity and sensitivity, when >5 B. malayi worms were present in SCID mice. USG ipFDS was predictive of macrofilaricidal activity in randomized, blinded studies comparing flubendazole, albendazole and vehicle-treated SCID mice. Semi-quantification of ipFDS could predict worm burden >10 with 87-100% accuracy in SCID mice or gerbils. We estimate that pre-assessment of worm burden by USG could reduce intra-group variation, obviate the need for surgical implantations in gerbils, and reduce total SCID mouse use by 40%. Thus, implementation of USG may reduce animal use, refine endpoints and negate invasive techniques for assessing anti-filarial drug efficacy.


Assuntos
Brugia Malayi/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Filariose/tratamento farmacológico , Ultrassonografia , Albendazol/administração & dosagem , Animais , Brugia Malayi/patogenicidade , Filariose/diagnóstico por imagem , Filariose/parasitologia , Filaricidas/administração & dosagem , Camundongos , Camundongos SCID , Resultado do Tratamento
11.
Sci Rep ; 7(1): 210, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28303006

RESUMO

Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.


Assuntos
Antibacterianos/administração & dosagem , Filariose Linfática/tratamento farmacológico , Filarioidea/microbiologia , Oncocercose/tratamento farmacológico , Rifampina/administração & dosagem , Wolbachia/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/farmacologia , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/microbiologia , Brugia Malayi/fisiologia , DNA Bacteriano/efeitos dos fármacos , Modelos Animais de Doenças , Filariose Linfática/parasitologia , Desenvolvimento Embrionário/efeitos dos fármacos , Filarioidea/efeitos dos fármacos , Filarioidea/fisiologia , Humanos , Camundongos , Onchocerca volvulus/efeitos dos fármacos , Onchocerca volvulus/microbiologia , Onchocerca volvulus/fisiologia , Oncocercose/parasitologia , Rifampina/farmacologia , Resultado do Tratamento , Wolbachia/genética , Wuchereria bancrofti/efeitos dos fármacos , Wuchereria bancrofti/microbiologia , Wuchereria bancrofti/fisiologia
12.
Sci Rep ; 6: 23458, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996237

RESUMO

Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25-40 mg/Kg regimen is bioequivalent to a clinically effective 100-200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis.


Assuntos
Antibacterianos/administração & dosagem , Filariose Linfática/prevenção & controle , Minociclina/administração & dosagem , Wolbachia/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/parasitologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doxiciclina/administração & dosagem , Doxiciclina/farmacocinética , Filariose Linfática/parasitologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Minociclina/farmacocinética , Wolbachia/patogenicidade
13.
Parasit Vectors ; 7: 472, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25338621

RESUMO

BACKGROUND: New drugs effective against adult filariae (macrofilaricides) would accelerate the elimination of lymphatic filariasis and onchocerciasis. Anti-Onchocerca drug development is hampered by the lack of a facile model. We postulated that SCID mice could be developed as a fmacrofilaricide screening model. METHODS: The filaricides: albendazole (ABZ), diethylcarbamazine (DEC), flubendazole (FBZ), ivermectin (IVM) and the anti-Wolbachia macrofilaricide, minocycline (MIN) were tested in Brugia malayi (Bm)-parasitized BALB/c SCID mice vs vehicle control (VC). Responses were compared to BALB/c wild type (WT). Onchocerca ochengi male worms or onchocercomata were surgically implanted into BALB/c SCID, CB.17 SCID, BALB/c WT mice or Meriones gerbils. Survival was evaluated at 7-15 days. BALB/c SCID were tested to evaluate the responsiveness of pre-clinical macrofilaricides FBZ and rifapentine (RIFAP) against male Onchocerca. RESULTS: WT and SCID responded with >95% efficacy following ABZ or DEC treatments against Bm larvae (P < 0.0001). IVM was partially filaricidal against Bm larvae in WT and SCID (WT; 39.8%, P = 0.0356 and SCID; 56.7%, P = 0.026). SCID responded similarly to WT following IVM treatment of microfilaraemias (WT; 79%, P = 0.0194. SCID; 76%, P = 0.0473). FBZ induced a total macrofilaricidal response against adult Bm in WT and SCID (WT; P = 0.0067, SCID; P = 0.0071). MIN induced a >90% reduction in Bm Wolbachia burdens (P < 0.0001) and a blockade of microfilarial release (P = 0.0215) in SCID. Male Onchocerca survival was significantly higher in SCID vs WT mice, but not gerbils, after +15 days (60% vs 22% vs 39% P = 0.0475). Onchocercoma implants had engrafted into host tissues, with evidence of neovascularisation, after +7 days and yielded viable macro/microfilariae ex vivo. FBZ induced a macrofilaricidal effect in Onchocerca male implanted SCID at +5 weeks (FBZ; 1.67% vs VC; 43.81%, P = 0.0089). Wolbachia loads within male Onchocerca were reduced by 99% in implanted SCID receiving RIFAP for +2 weeks. CONCLUSIONS: We have developed a 'pan-filarial' small animal research model that is sufficiently robust, with adequate capacity and throughput, to screen existing and future pre-clinical candidate macrofilaricides. Pilot data suggests a murine onchocercoma xenograft model is achievable.


Assuntos
Filariose Linfática/tratamento farmacológico , Filaricidas/farmacologia , Oncocercose/tratamento farmacológico , Animais , Brugia Malayi , Feminino , Gerbillinae , Masculino , Menotropinas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Onchocerca
14.
PLoS One ; 7(12): e51835, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284784

RESUMO

GNAS/Gnas encodes G(s)α that is mainly biallelically expressed but shows imprinted expression in some tissues. In Albright Hereditary Osteodystrophy (AHO) heterozygous loss of function mutations of GNAS can result in ectopic ossification that tends to be superficial and attributable to haploinsufficiency of biallelically expressed G(s)α. Oed-Sml is a point missense mutation in exon 6 of the orthologous mouse locus Gnas. We report here both the late onset ossification and occurrence of benign cutaneous fibroepithelial polyps in Oed-Sml. These phenotypes are seen on both maternal and paternal inheritance of the mutant allele and are therefore due to an effect on biallelically expressed G(s)α. The ossification is confined to subcutaneous tissues and so resembles the ossification observed with AHO. Our mouse model is the first with both subcutaneous ossification and fibroepithelial polyps related to G(s)α deficiency. It is also the first mouse model described with a clinically relevant phenotype associated with a point mutation in G(s)α and may be useful in investigations of the mechanisms of heterotopic bone formation. Together with earlier results, our findings indicate that G(s)α signalling pathways play a vital role in repressing ectopic bone formation.


Assuntos
Modelos Animais de Doenças , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Mutação/genética , Ossificação Heterotópica/etiologia , Dermatopatias/etiologia , Tela Subcutânea/patologia , Animais , Cromograninas , Feminino , Masculino , Camundongos , Camundongos Knockout , Ossificação Heterotópica/patologia , Fenótipo , Dermatopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA