Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886980

RESUMO

The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against Pseudomonas aeruginosa planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the P. aeruginosa cell membrane. The nano-hybrids attenuated 97 ± 1.8% of the quorum sensing-regulated virulence factors' production and inhibited the bacterium biofilm formation in an eight-fold lower concentration than the stand-alone gentamicin NSs. The P. aeruginosa sensitivity to GeN_AC NSs was also confirmed in a real time assay monitoring the bacterial cells elimination, using a quartz crystal microbalance with dissipation. In protein-enriched conditions mimicking the in vivo application, these hybrid nano-antibacterials maintained their antibacterial and antibiofilm effectiveness at concentrations innocuous to human cells. Therefore, the novel GeN_AC NSs with complementary modes of action show potential for the treatment of P. aeruginosa biofilm infections at a reduced antibiotic dosage.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Gentamicinas/farmacologia , Humanos
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886883

RESUMO

Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of Staphylococcus aureus within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant S. aureus biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antivirais/farmacologia , Biofilmes , Resistência a Múltiplos Medicamentos , Farneseno Álcool/farmacologia , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
3.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232983

RESUMO

Providing clean drinking water is a great challenge worldwide, especially for low-income countries where the access to safe water is limited. During the last decade, new biotechnological approaches have been explored to improve water management. Among them, the use of antimicrobial nanoparticles for designing innovative centralized and decentralized (point-of-use) water treatment systems for microbial decontamination has received considerable attention. Herein, antimicrobial lignin capped silver nanoparticles (AgLNP) were embedded on residual cork pieces using high-intensity ultrasound coupled with laccase-mediated grafting to obtain biofunctionalized nanomaterial. The developed AgLNP-coated cork proved to be highly efficient to drastically reduce the number of viable Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in liquid medium. Additionally, the coated-cork was characterized using FTIR-ATR spectroscopy and SEM imaging, and further used as a filter bed in a point-of-use device for water disinfection. The constructed water filtering system significantly reduced the amount of viable E. coli and resistant Bacillus cereus spores from filtered water operating at increasing residence times of 1, 4, 6, 16, 24, and 48 h. Therefore, the presented results prove that the obtained cork-based antimicrobial nanocomposite material could be used as a filtering medium for the development of water filtration system to control pathogen dissemination.


Assuntos
Anti-Infecciosos , Água Potável , Nanopartículas Metálicas , Purificação da Água , Antibacterianos/química , Antibacterianos/farmacologia , Desinfecção/métodos , Escherichia coli , Lacase , Lignina , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Purificação da Água/métodos
4.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012396

RESUMO

Current procedures for the assessment of chronic wound infection are time-consuming and require complex instruments and trained personnel. The incidence of chronic wounds worldwide, and the associated economic burden, urge for simple and cheap point-of-care testing (PoCT) devices for fast on-site diagnosis to enable appropriate early treatment. The enzyme myeloperoxidase (MPO), whose activity in infected wounds is about ten times higher than in non-infected wounds, appears to be a suitable biomarker for wound infection diagnosis. Herein, we develop a single-component foldable paper-based device for the detection of MPO in wound fluids. The analyte detection is achieved in two steps: (i) selective immunocapture of MPO, and (ii) reaction of a specific dye with the captured MPO, yielding a purple color with increasing intensity as a function of the MPO activity in infected wounds in the range of 20-85 U/mL. Ex vivo experiments with wound fluids validated the analytic efficiency of the paper-based device, and the results strongly correlate with a spectrophotometric assay.


Assuntos
Líquidos Corporais , Infecção dos Ferimentos , Colorimetria , Corantes , Humanos , Papel , Testes Imediatos , Infecção dos Ferimentos/diagnóstico
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948227

RESUMO

Silver nanoparticles (Ag NPs) appeared as promising antimicrobial candidates to face the development of antibiotic resistance. Although reported as toxic towards mammalian cells, their combination with biomolecules have shown reduced toxicity, while maintaining the antimicrobial function. Herein, hyaluronic acid (HA) with low (40 kDa), medium (200 and 600 kDa) and high (2 MDa) molecular weight (Mw) was modified with adipic acid dihydrazide (ADH) and used as reducing and capping agents to synthesise antimicrobial hybrid Ag NPs. The Mw of the polymer played a crucial role in the morphology, size and antibacterial activity of the Ag NPs. The 600 and 200 kDa HA-ADH-Ag NPs were able to reduce the Escherichia coli and Staphylococcus aureus concentration by more than 3 logs, while the 40 kDa NPs reached ~2 logs reduction. The 2 MDa HA-ADH failed to form homogenous NPs with strong bactericidal activity. A mechanistic study of the interaction with a model bacterial membrane using Langmuir isotherms confirmed the greater interaction between bacteria and higher Mw polymers and the effect of the NP's morphology. The nanocomposites low toxicity to human skin cells was demonstrated in vitro, showing more than 90% cell viability after incubation with the NPs.


Assuntos
Anti-Infecciosos , Escherichia coli/crescimento & desenvolvimento , Ácido Hialurônico , Nanopartículas Metálicas/química , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Peso Molecular , Prata/química , Prata/farmacologia
6.
Gen Physiol Biophys ; 39(2): 195-202, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32329447

RESUMO

The current strategies to eradicate bacteria require that the antimicrobial agent either penetrate or disrupt the bacterial membrane. In Escherichia coli (E.coli) as a model of Gram-negative strains, the antimicrobials have to cross two barriers - the outer and the inner membrane being the latter composed by ~ 77% phosphatidylethanolamine (PE), ~ 13% phosphatidylglycerol (PG) and ~ 10% cardiolipin (CL) lipids. Each one of these lipid families shares the same headgroup, but contains acyl chains with varying length and degree of unsaturation. Bacteria adapt their membrane lipid composition and metabolism in response to environmental signals, such as the temperature, resulting in different interactions with exogenous molecules, e.g. antibacterial agents. Herein, bacterial model membranes are prepared to evaluate the lipid-lipid interactions in Langmuir monolayers of binary mixtures at several molar ratios of PE and PG or CL at human physiological temperature (37°C). Both PE:PG and PE:CL monolayers were stable at 37°C and presented higher molecular areas (> 20 Å2/molecule) than at 23°C. However, these lipid mixtures presented liquid-expanded state and rigidity (inverse of the compressibility modulus ~ 90 mN/m) slightly lower than at 23°C. Such athermalicity at biologically relevant temperatures may favour the preservation of the biological functions of E.coli.


Assuntos
Membrana Externa Bacteriana/química , Temperatura Corporal , Escherichia coli , Lipídeos de Membrana/química , Cardiolipinas , Membrana Celular/química , Humanos , Fosfatidiletanolaminas , Fosfatidilgliceróis
7.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796622

RESUMO

Ascorbate oxidases are an enzyme group that has not been explored to a large extent. So far, mainly ascorbate oxidases from plants and only a few from fungi have been described. Although ascorbate oxidases belong to the well-studied enzyme family of multi-copper oxidases, their function is still unclear. In this study, Af_AO1, an enzyme from the fungus Aspergillus flavus, was characterized. Sequence analyses and copper content determination demonstrated Af_AO1 to belong to the multi-copper oxidase family. Biochemical characterization and 3D-modeling revealed a similarity to ascorbate oxidases, but also to laccases. Af_AO1 had a 10-fold higher affinity to ascorbic acid (KM = 0.16 ± 0.03 mM) than to ABTS (KM = 1.89 ± 0.12 mM). Furthermore, the best fitting 3D-model was based on the ascorbate oxidase from Cucurbita pepo var. melopepo. The laccase-like activity of Af_AO1 on ABTS (Vmax = 11.56 ± 0.15 µM/min/mg) was, however, not negligible. On the other hand, other typical laccase substrates, such as syringaldezine and guaiacol, were not oxidized by Af_AO1. According to the biochemical and structural characterization, Af_AO1 was classified as ascorbate oxidase with unusual, laccase-like activity.


Assuntos
Ascorbato Oxidase/metabolismo , Aspergillus flavus/enzimologia , Lacase/metabolismo , Sequência de Aminoácidos , Ascorbato Oxidase/química , Cobre/metabolismo , Cinética , Lacase/química , Modelos Moleculares , Oxirredução , Especificidade por Substrato
8.
Biomacromolecules ; 19(9): 3628-3636, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052024

RESUMO

In this study, freestanding nanobiocomposite films were obtained by the sequential deposition of biopolymer-capped silver nanoparticles (AgNPs) and hyaluronic acid (HA). At first, dispersions of AgNPs decorated with chitosan (CS) or aminocellulose (AC) were synthesized by applying high intensity ultrasound. These polycationic nanoentities were layer-by-layer assembled with the HA polyanion to generate stable 3D supramolecular constructs, where the biopolymer-capped AgNPs play the dual role of active agent and structural element. SEM images of the assemblies revealed gradual increase of thickness with the number of deposited bilayers. The composites of ≥50 bilayers were safe to human cells and demonstrated 100% antibacterial activity against Staphylococcus aureus and Escherichia coli. Moreover, the films containing CSAgNPs brought about the total prevention of biofilm formation reducing the cells surface adherence by up to 6 logs. Such nanobiocomposites could serve as an effective barrier to control bacterial growth on injured skin, burns, and chronic wounds.


Assuntos
Antibacterianos/química , Nanocompostos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Celulose/análogos & derivados , Quitosana/análogos & derivados , Escherichia coli/efeitos dos fármacos , Ácido Hialurônico/química , Nanopartículas Metálicas/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos
9.
Appl Microbiol Biotechnol ; 102(5): 2075-2089, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29392390

RESUMO

Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana Múltipla , Animais , Antibacterianos/química , Bactérias/genética , Bactérias/metabolismo , Descoberta de Drogas , Humanos , Nanopartículas/química
10.
Biomacromolecules ; 18(5): 1544-1555, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28421746

RESUMO

The healing of chronic wounds requires intensive medical intervention at huge healthcare costs. Dressing materials should consider the multifactorial nature of these wounds comprising deleterious proteolytic and oxidative enzymes and high bacterial load. In this work, multifunctional hydrogels for chronic wound application were produced by enzymatic cross-linking of thiolated chitosan and gallic acid. The hydrogels combine several beneficial to wound healing properties, controlling the matrix metalloproteinases (MMPs) and myeloperoxidase (MPO) activities, oxidative stress, and bacterial contamination. In vitro studies revealed above 90% antioxidant activity, and MPO and collagenase inhibition by up to 98 and 23%, respectively. Ex vivo studies with venous leg ulcer exudates confirmed the inhibitory capacity of the dressings against MPO and MMPs. Additionally, the hydrogels reduced the population of the most frequently encountered in nonhealing wounds bacterial strains. The stable at physiological conditions and resistant to lysozyme degradation hydrogels showed high biocompatibility with human skin fibroblasts.


Assuntos
Bandagens , Quitosana/análogos & derivados , Hidrogéis/química , Cicatrização , Antibacterianos/química , Antibacterianos/farmacologia , Biocatálise , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Gálico/análogos & derivados , Humanos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Compostos de Sulfidrila/química
11.
Nanomedicine ; 12(7): 2061-2069, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288665

RESUMO

The transformation of penicillin G into nano/micro-sized spheres (nanopenicillin) using sonochemical technology was explored as a novel tool for the eradication of Gram-negative bacteria and their biofilms. Known by its effectiveness only against Gram-positive microorganisms, the penicillin G spherization boosted the inhibition of the Gram-negative Pseudomonas aeruginosa 10-fold (from 0.3 to 3.0 log-reduction) and additionally induced 1.2 log-reduction of Escherichia coli growth. The efficient penetration of the spheres within a Langmuir monolayer sustained the theory that nanopenicillin is able to cross the membrane and reach the periplasmic space in Gram-negative bacteria where they inhibit the ß-lactam targets: the transferases that build the bacteria cell wall. Moreover, it considerably suppressed the growth of both bacterial biofilms on a medically relevant polystyrene surface, leaving majority of the adhered cells dead compared to the treatment with the non-processed penicillin G. Importantly, nanopenicillin was found innocuous towards human fibroblasts at the antibacterial-effective concentrations.


Assuntos
Antibacterianos/farmacologia , Penicilina G/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli , Humanos , Nanotecnologia , beta-Lactamas
12.
Appl Microbiol Biotechnol ; 99(10): 4373-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582561

RESUMO

Bacteria use a signaling mechanism called quorum sensing (QS) to form complex communities of surface-attached cells known as biofilms. This protective mode of growth allows them to resist antibiotic treatment and originates the majority of hospital-acquired infections. Emerging alternatives to control biofilm-associated infections and multidrug resistance development interfere with bacterial QS pathways, exerting less selective pressure on bacterial population. In this study, biologically stable coatings comprising the QS disrupting enzyme acylase were built on silicone urinary catheters using a layer-by-layer technique. This was achieved by the alternate deposition of negatively charged enzyme and positively charged polyethylenimine. The acylase-coated catheters efficiently quenched the QS in the biosensor strain Chromobacterium violaceum CECT 5999, demonstrated by approximately 50% inhibition of violacein production. These enzyme multilayer coatings significantly reduced the Pseudomonas aeruginosa ATCC 10145 biofilm formation under static and dynamic conditions in an in vitro catheterized bladder model. The quorum quenching enzyme coatings did not affect the viability of the human fibroblasts (BJ-5ta) over 7 days, corresponding to the extended useful life of urinary catheters. Such enzyme-based approach could be an alternative to the conventional antibiotic treatment for prevention of biofilm-associated urinary tract infections.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções Relacionadas a Cateter/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Cateteres Urinários/microbiologia , Amidoidrolases/química , Antibacterianos/química , Infecções Relacionadas a Cateter/microbiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Humanos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos
13.
Biomacromolecules ; 15(4): 1365-74, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24641188

RESUMO

Bacterial-mediated diseases are a major healthcare concern worldwide due to the rapid spread of antibiotic-resistant bacteria. One strategy to manage the bacterial infections while avoiding the emergence of resistant strains implies specific targeting and disruption of bacteria membranes. This work evaluates the potential of nanostructured biopolymer derivatives, nanocapsules (NCs), to disrupt the bacteria cell walls and effectively kill planktonic microorganisms. Two biopolymers, chitosan and cellulose, were chemically modified to synthesize derivatives with improved cationic character (thiolated chitosan and aminocellulose) prior to their processing into nanocapsules via a one-step sonochemical process. The interactions of NCs, displaying an average size of around 250 nm, with bacteria membrane were evaluated using two membrane models: Langmuir monolayers and liposome bilayers composed of a l-α-phosphatidylglycerol phospholipid extracted from Escherichia coli. NCs possessed improved membrane disturbing capacity in comparison to the nonprocessed biopolymer derivatives, by drastically increasing the monolayer fluidity and inducing more than 50% leakage of a dye inserted in the bilayered liposomes. In addition, membrane disturbance was directly proportional to the NCs cationic charge. Whereas evidence showed that thiolated chitosan and aminocellulose interacted with the bacteria membrane through a "carpet model", the NCs were found to induce larger surface defects and high local perturbance through a "detergent model". Importantly, the degree of disruption caused by the biopolymer derivatives and NCs correlated well with the antimicrobial capacity against Escherichia coli, selectively killing bacteria cells without imparting toxicity to human fibroblasts.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanocápsulas/química , Cátions , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Celulose/química , Quitosana/química , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Lipossomos/química , Nanocápsulas/toxicidade , Nanotecnologia/métodos , Fosfatidilgliceróis/química , Fosfolipídeos/química , Ultrassom/métodos
14.
Int J Nanomedicine ; 19: 7731-7750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099787

RESUMO

Purpose: Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods: To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1ß, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/ß-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results: The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion: In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.


Assuntos
Inflamação , Lignina , Nanopartículas , Peixe-Zebra , Animais , Lignina/química , Lignina/farmacologia , Nanopartículas/química , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Modelos Animais de Doenças , Citocinas/metabolismo , Citocinas/genética , Embrião não Mamífero/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 16(27): 34656-34668, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38916599

RESUMO

Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.


Assuntos
Antibacterianos , Biofilmes , Nanocompostos , Prata , Infecções Urinárias , Animais , Coelhos , Infecções Urinárias/prevenção & controle , Prata/química , Prata/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Nanocompostos/química , Biofilmes/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ouro/química , Bivalves/química , Cateteres Urinários/microbiologia , Gelatina/química , Gelatina/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
16.
ACS Appl Mater Interfaces ; 16(30): 39129-39139, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39039989

RESUMO

Catheter-associated urinary tract infections represent a major share of nosocomial infections, and are associated with longer periods of hospitalization and a huge financial burden. Currently, there are only a handful of commercial materials that reduce biofilm formation on urinary catheters, mostly relying on silver alloys. Therefore, we combined silver-phenolated lignin nanoparticles with poly(carboxybetaine) zwitterions to build a composite antibiotic-free coating with bactericidal and antifouling properties. Importantly, the versatile lignin chemistry enabled the formation of the coating in situ, enabling both the nanoparticle grafting and the radical polymerization by using only the oxidative activity of laccase. The resulting surface efficiently prevented nonspecific protein adsorption and reduced the bacterial viability on the catheter surface by more than 2 logs under hydrodynamic flow, without exhibiting any apparent signs of cytotoxicity. Moreover, the said functionality was maintained over a week both in vitro and in vivo, whereby the animal models showed excellent biocompatibility.


Assuntos
Lacase , Cateteres Urinários , Cateteres Urinários/microbiologia , Animais , Lacase/química , Prata/química , Prata/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Lignina/química , Camundongos , Humanos , Biofilmes/efeitos dos fármacos , Infecções Urinárias/prevenção & controle , Infecções Urinárias/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos
17.
Biomater Adv ; 162: 213925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908101

RESUMO

An electro-chemo-responsive carrier has been engineered for the controlled release of a highly hydrophilic anticancer peptide, CR(NMe)EKA (Cys-Arg- N-methyl-Glu-Lys-Ala). Remotely controlled on demand release of CR(NMe)EKA, loaded in electro-responsive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, has been achieved by applying electrical stimuli consisting of constant positive (+0.50 V) or negative voltages (-0.50 V) at pre-defined time intervals. In addition, after loading CR(NMe)EKA/PEDOT nanoparticles into an injectable pH responsive hydrogel formed by phenylboronic acid grafted to chitosan (PBA-CS), the efficiency of the controlled peptide release has increased approximately by a factor of 2.6. The hydration ratio of such hydrogel is significantly lower in acidic environments than in neutral and basic media, which has been attributed to the dissociation of the boronate bonds between polymer chains. Hence, the electro-controlled peptide release from PBA-CS/CR(NMe)EKA/PEDOT hydrogels, in the acidic environment of tumors, combines the effects of the oxidation and reduction of PEDOT chains on the interactions with the peptide and the carrier, with the peptide concentration gradient at the interface between the collapsed hydrogel and the release medium. Furthermore, the peptide released by electro-stimulation preserved its bioactivity assessed by promoting human prostate cancer cells death. Overall, this work is a promising attempt to develop a carrier platform for small hydrophilic anticancer peptides, which delivery rationale is synergistically regulated by the electrical and pH responsiveness of the carrier.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Hidrogéis , Nanopartículas , Polímeros , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Hidrogéis/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Polímeros/química , Peptídeos/química , Preparações de Ação Retardada/química , Neoplasias da Próstata/tratamento farmacológico , Quitosana/química , Masculino , Sistemas de Liberação de Medicamentos/métodos
18.
ACS Appl Bio Mater ; 7(2): 990-998, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226433

RESUMO

Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.


Assuntos
Aparelho Sanitário , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Dióxido de Silício/farmacologia , Biofilmes , Antibacterianos/farmacologia , Catéteres , Carbono
19.
Antibiotics (Basel) ; 12(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830221

RESUMO

Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.

20.
J Colloid Interface Sci ; 646: 576-586, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210905

RESUMO

Pseudomonas aeruginosa bacteria originate severe infections in hospitalized patients and those with chronic debilitating diseases leading to increased morbidity and mortality, longer hospitalization and huge financial burden to the healthcare system. The clinical relevance of P. aeruginosa infections is increased by the capability of this bacterium to grow in biofilms and develop multidrug resistant mechanisms that preclude conventional antibiotic treatments. Herein, we engineered novel multimodal nanocomposites that integrate in the same entity antimicrobial silver nanoparticles (NPs), the intrinsically antimicrobial, but biocompatible biopolymer chitosan, and the anti-infective quorum quenching enzyme acylase I. Acylase present in the NPs specifically degraded the signal molecules governing bacterial cell-to-cell communication and inhibited by âˆ¼ 55 % P. aeruginosa biofilm formation, while the silver/chitosan template altered the integrity of bacterial membrane, leading to complete eradication of planktonic bacteria. The innovative combination of multiple bacteria targeting modalities resulted in 100-fold synergistic enhancement of the antimicrobial efficacy of the nanocomposite at lower and non-hazardous towards human skin cells concentrations, compared to the silver/chitosan NPs alone.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Humanos , Pseudomonas aeruginosa , Quitosana/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA