Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202498

RESUMO

Maintaining the physical integrity of a silicon-based anode, which suffers from damage caused by severe volume changes during cycling, is a top priority in its practical applications. The performance of silicon-flake-based anodes has been significantly improved by mixing nanodiamond powders with silicon flakes for the fabrication of anodes for lithium-ion batteries (LIBs). Nanodiamonds adhere to the surfaces of silicon flakes and are distributed in the binder between flakes. A consistent and robust solid electrolyte interphase (SEI) is promoted by the aid of abundant reactive surface-linked functional groups and exposed dangling bonds of nanodiamonds, leading to enhanced physical integrity of the silicon flakes and the anode. The battery's high-rate discharge capabilities and cycle life are thus improved. SEM, Raman spectroscopy, and XRD were applied to examine the structure and morphology of the anode. Electrochemical performance was evaluated to demonstrate a capacity retention of nearly 75% after 200 cycles, with the final specific capacity exceeding 1000 mAh/g at a test current of 4 mA/cm2. This is attributed to the improved stability of the solid electrolyte interphase (SEI) structure that was achieved by integrating nanodiamonds with silicon flakes in the anode, leading to enhanced cycling stability and rapid charge-discharge performance. The results from this study present an effective strategy of achieving high-cycling-performance by adding nanodiamonds to silicon-flake-based anodes.

2.
ACS Omega ; 8(8): 8001-8010, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872967

RESUMO

A silicon-based lithium-ion battery (LIB) anode is extensively studied because of silicon's abundance, high theoretical specific capacity (4200 mAh/g), and low operating potential versus lithium. Technical barriers to large-scale commercial applications include the low electrical conductivity and up to about 400% volume changes of silicon due to alloying with lithium. Maintaining the physical integrity of individual silicon particles and the anode structure is the top priority. We use strong hydrogen bonds between citric acid (CA) and silicon to firmly coat CA on silicon. Carbonized CA (CCA) enhances electrical conductivity of silicon. Polyacrylic acid (PAA) binder encapsulates silicon flakes by strong bonds formed by abundant COOH functional groups in PAA and on CCA. It results in excellent physical integrity of individual silicon particles and the whole anode. The silicon-based anode shows high initial coulombic efficiency, around 90%, and the capacity retention of 1479 mAh/g after 200 discharge-charge cycles at 1 A/g current. At 4 A/g, the capacity retention of 1053 mAh/g was achieved. A durable high-ICE silicon-based LIB anode capable of high discharge-charge current has been reported.

3.
Opt Express ; 20(20): 22943-52, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037444

RESUMO

Effects and mechanisms of conductivity variation of chemically vapor deposited single-layer graphene covering silver nanoparticles on SiO(2)/Si are reported based on blue-light (405 nm) induced plasmonic coupling and electrical current induced annealing and desorption of surface adsorbates. With 1V applied voltage, photoconductivity is positive except a brief negative period when the graphene is first illuminated by light. At 10 mV applied voltage, negative photoconductivity persists for hours. In comparison, negative photoconductivity of graphene on pristine SiO(2)/Si persists for tens of hours. When the applied voltage is increased to 1V, it takes tens of hours of light illumination to change to positive photoconductivity.


Assuntos
Grafite/química , Grafite/efeitos da radiação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Dióxido de Silício/química , Silício/química , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Condutividade Elétrica , Campos Eletromagnéticos , Luz , Teste de Materiais
4.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159814

RESUMO

We report a facile pyrolysis process for the fabrication of a porous silicon-based anode for lithium-ion battery. Silicon flakes of 100 nm × 800 nm × 800 nm were mixed with equal weight of sodium carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) as the binder and the conductivity enhancement additive, Ketjen Black (KB), at the weight ratio of silicon-binder-KB being 70%:20%:10%, respectively. Pyrolysis was carried out at 700 °C in an inert argon environment for one hour. The process converts the binder to graphitic carbon coatings on silicon and a porous carbon structure. The process led to initial coulombic efficiency (ICE) being improved from 67% before pyrolysis to 75% after pyrolysis with the retention of 2.1 mAh/cm2 areal capacity after 100 discharge-charge cycles at 1 A/g rate. The improved ICE and cycling performance are attributed to graphitic coatings, which protect silicon from irreversible reactions with the electrolyte to form compounds such as lithium-silicon-fluoride (Li2SiF6) and the physical integrity and buffer space provided by the porous carbon structure. By eliminating the adverse effects of KB, the anode made with silicon-to-binder weight ratio of 70%:30% exhibited further improvement of the ICE to approximately 90%. This demonstrated that pyrolysis is a facile and promising one-step process for the fabrication of silicon-based anode with high ICE and long cycling life. This is especially true when the amount and choice of conductivity enhancement additive are optimized.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564096

RESUMO

Silicon-based anodes are promising to replace graphite-based anodes for high-capacity lithium-ion batteries (LIB). However, the charge-discharge cycling suffers from internal stresses created by large volume changes of silicon, which form silicon-lithium compounds, and excessive consumption of lithium by irreversible formation of lithium-containing compounds. Consumption of lithium by the initial conditioning of the anode, as indicated by low initial coulombic efficiency (ICE), and subsequently continuous formation of solid-electrolyte-phase (SEI) on the freshly exposed silicon surface, are among the main issues. A high-performance, silicon-based, high-capacity anode exhibiting 88.8% ICE and the retention of 2 mAh/cm2 areal capacity after 200 discharge-charge cycles at the rate of 1 A/g is reported. The anode is made on a copper foil using a mixture of 70%:10%:20% by weight ratio of silicon flakes of 100 × 800 × 800 nm in size, Super P conductivity enhancement additive, and an equal-weight mixture of CMC and SBR binders. Pyrolysis of fabricated anodes at 700 °C in argon environment for 1 h was applied to convert the binders into a porous graphitic carbon structure that encapsulates individual silicon flakes. The porous anode has a mechanically strong and electrically conductive graphitic carbon structure formed by the pyrolyzed binders, which protect individual silicon flakes from excessive reactions with the electrolyte and help keep small pieces of broken silicon flakes together within the carbon structure. The selection and amount of conductivity enhancement additives are shown to be critical to the achievement of both high-ICE and high-capacity retention after long cycling. The Super P conductivity enhancement additive exhibits a smaller effective surface area where SEI forms compared to KB, and thus leads to the best combination of both high-ICE and high-capacity retention. A silicon-based anode exhibiting high capacity, high ICE, and a long cycling life has been achieved by the facile and promising one-step fabrication process.

6.
Opt Express ; 19(18): 17092-8, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935070

RESUMO

We report on strong plasmonic coupling from silver nanoparticles covered by hydrogen-terminated chemically vapor deposited single-layer graphene, and its effects on the detection and identification of adenine molecules through surface-enhanced Raman spectroscopy (SERS). The high resistivity of the graphene after subjecting to remote plasma hydrogenation allows plasmonic coupling induced strong local electromagnetic fields among the silver nanoparticles to penetrate the graphene, and thus enhances the SERS efficiency of adenine molecules adsorbed on the film. The graphene layer protects the nanoparticles from reactive and harsh environments and provides a chemically inert and biocompatible carbon surface for SERS applications.


Assuntos
Grafite , Nanopartículas Metálicas , Prata , Análise Espectral Raman/métodos , Adenina/análise , Campos Eletromagnéticos , Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotecnologia , Fenômenos Ópticos
7.
Opt Express ; 19(12): 11441-50, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716375

RESUMO

A novel SERS sensor for adenine molecules is fabricated electrochemically using an ordered two-dimensional array of self-aligned silver nanoparticles encapsulated by alumina. Silver is electro-deposited on the interior surfaces at the bottom of nano-channels in a porous anodic aluminum oxide (AAO) film. After etching aluminum, the back-end alumina serves as a SERS substrate. SERS enhancement factor greater than 10(6) is measured by 532 nm illumination. It exhibits robust chemical stability and emits reproducible Raman signals from repetitive uses for eight weeks. The inexpensive mass production process makes this reliable, durable and sensitive plasmon based optical device promising for many applications.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Eletroquímica/métodos , Prata/química , Análise Espectral Raman/instrumentação , Adenina/análise , Eletrodos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 13(40): 48260-48269, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590814

RESUMO

Herein, for the first time, a combination of detonation nanodiamond (DND)-tungsten disulfide (WS2) was devised and studied for its selective H2-sensing properties at room temperature. DND-WS2 samples were prepared by a sonication-assisted (van der Waals interaction) liquid-phase exfoliation process in low-boiling solvents with DND as a surfactant. The samples were further hydrothermally treated in an autoclave under high pressure and temperature. The as-prepared samples were separated as two parts named DND-WS2 BH (before hydrothermal) and DND-WS2 AH (after hydrothermal). The exfoliated bilayer to few-layer DND-doped WS2 nanosheets were confirmed by ultraviolet-visible spectra, atomic force microscopy, and transmission electron microscopy studies. It was observed that the DND powder not only acted as a surfactant but also doped and expanded on WS2 nanosheets. The difference between samples BH and AH treatment was further investigated using Raman spectroscopy. The WS2 and DND-WS2 samples on SiO2/Si were fabricated using a sputtered Pd/Ag interdigitated electrode and utilized for H2 gas-sensing measurements. Surprisingly, the DND-WS2 exhibits an ultrahigh sensor response of 72.8% to H2 at 500 ppm when compared to only 9.9% for WS2 alone. Also, the DND-WS2 shows a fast response/recovery time, high selectivity, and stability toward H2 gas. It can be attributed to the correlation of the intergrain phase of DND nanoparticles and WS2 nanosheets, which contributes to the easy transportation of charge carriers when exposed to the air and H2 gas atmosphere. Moreover, it is believed that DND-induced WS2 exfoliation might inspire future synthesis of transition metal dichalcogenides induced by DND in green solvents.

9.
Nanomaterials (Basel) ; 11(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503892

RESUMO

Silicon flakes of about 100 × 1000 × 1000 nm in sizes recycled from wastes of silicon wafer manufacturing processes were coated with combined silicon carbide (SiC) and graphitic (Resorcinol-Formaldehyde (RF)) carbon coatings to serve as active materials of the anode of lithium ion battery (LIB). Thermal carbonization of silicon at 1000 °C for 5 h forms 5-nm SiC encapsulating silicon flakes. SiC provides physical strength to help silicon flakes maintain physical integrity and isolating silicon from irreversible reactions with the electrolyte. Lithium diffuses through SiC before alloying with silicon. The SiC buffer layer results in uniform alloying reactions between lithium and silicon on the surface around a silicon flake. RF carbon coatings provide enhanced electrical conductivity of SiC encapsulated silicon flakes. We characterized the coatings and anode by SEM, TEM, FTIR, XRD, cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and electrical resistance measurements. Coin half-cells with combined SiC and RF carbon coatings exhibit an initial Coulombic efficiency (ICE) of 76% and retains a specific capacity of 955 mAh/g at 100th cycle and 850 mAh/g at 150th cycle of repetitive discharge and charge operation. Pre-lithiation of the anode increases the ICE to 97%. The SiC buffer layer reduces local stresses caused by non-uniform volume changes and improves the capacity retention and the cycling life.

10.
Opt Express ; 18(26): 27891-9, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21197062

RESUMO

We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.


Assuntos
Óxido de Alumínio/química , Membranas Artificiais , Nanopartículas/química , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Porosidade
11.
Biosensors (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932787

RESUMO

Adenine is an important molecule for biomedical and agricultural research and applications. The detection of low concentration adenine molecules is thus desirable. Surface-enhanced Raman scattering (SERS) is a promising label-free detection and fingerprinting technique for molecules of significance. A novel SERS sensor made of clusters of silver nanostructures deposited on copper bumps in valleys of an etched silicon substrate was previously reported to exhibit a low and reproducible detection limit for a 10-11 M neutral adenine aqueous solution. Reflection of laser illumination from the silicon surface surrounding a valley provides additional directions of laser excitation to adenine molecules adsorbing on a silver surface for the generation of enhanced SERS signal strength leading to a low detection limit. This paper further reports a concentration dependent shift of the ring-breathing mode SERS adenine peak towards 760 cm-1 with decreasing concentration and its pH-dependent SERS signal strength. For applications, where the pH value can vary, reproducible detection of 10-12 M adenine in a pH 9 aqueous solution is feasible, making the novel SERS structure a desirable pico-molar adenine sensor.


Assuntos
Adenina/análise , Prata/química , Análise Espectral Raman , Adsorção , Nanopartículas Metálicas , Dente Molar , Nanoestruturas , Silício , Água
12.
Biosensors (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429203

RESUMO

The detection of adenine molecules at very low concentrations is important for biological and medical research and applications. This paper reports a silver-based surface-enhanced Raman scattering (SERS) sensor with a very low detection limit for adenine molecules. Clusters of closely packed silver nanoparticles on surfaces of discrete ball-like copper bumps partially covered with graphene are deposited by immersion in silver nitrate. These clusters of silver nanoparticles exhibit abundant nanogaps between nanoparticles, where plasmonic coupling induces very high local electromagnetic fields. Silver nanoparticles growing perpendicularly on ball-like copper bumps exhibit surfaces of large curvature, where electromagnetic field enhancement is high. Between discrete ball-like copper bumps, the local electromagnetic field is low. Silver is not deposited on the low-field surface area. Adenine molecules interact with silver by both electrostatic and functional groups and exhibit low surface diffusivity on silver surface. Adenine molecules are less likely to adsorb on low-field sensor surface without silver. Therefore, adenine molecules have a high probability of adsorbing on silver surface of high local electric fields and contribute to the measured Raman scattering signal strength. We demonstrated SERS sensors made of clusters of silver nanoparticles deposited on discrete ball-like copper bumps with very a low detection limit for detecting adenine water solution of a concentration as low as 10-11 M.


Assuntos
Adenina/análise , Nanopartículas Metálicas/química , Prata/química , Estrutura Molecular , Análise Espectral Raman , Propriedades de Superfície
13.
Nanomaterials (Basel) ; 10(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317182

RESUMO

Ubiquitous mobile electronic devices and rapidly increasing electric vehicles demand a better lithium ion battery (LIB) with a more durable and higher specific charge storage capacity than traditional graphite-based ones. Silicon is among the most promising active media since it exhibits ten times of a specific capacity. However, alloying with lithium by silicon and dissociation of the silicon-lithium alloys induce high volume changes and result in pulverization. The loss of electrical contacts by silicon with the current collector of the anode causes rapid capacity decay. We report improved anode cycling performance made of silicon flakes partially encapsulated by silicon dioxide and coated with conductive nanocarbon films and CNTs. The silicon dioxide surface layer on a silicon flake improves the physical integrity for a silicon-based anode. The exposed silicon surface provides a fast transport of lithium ions and electrons. CNTs and nanocarbon films provide electrical connections between silicon flakes and the current collector. We report a novel way of manufacturing silicon flakes partially covered by silicon dioxide through breaking oxidized silicon flakes into smaller pieces. Additionally, we demonstrate an improved cycling life and capacity retention compared to pristine silicon flakes and silicon flakes fully encapsulated by silicon dioxide. Nanocarbon coatings provide conduction channels and further improve the anode performance.

14.
Acta Biomater ; 101: 484-494, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672582

RESUMO

Nanodiamonds (NDs) are considered to be relatively safe carbon nanomaterials used for the transmission of DNA, proteins and drugs. The feasibility of utilizing the NDs to deliver CRISPR-Cas9 system for gene editing has not been clearly studied. Therefore, in this study, we aimed to use NDs as the carriers of CRISPR-Cas9 components designed to introduce the mutation in RS1 gene associated with X-linked retinoschisis (XLRS). ND particles with a diameter of 3 nm were functionalized by carboxylation of the surface and covalently conjugated with fluorescent mCherry protein. Two linear DNA constructs were attached to the conjugated mCherry: one encoded Cas9 endonuclease and GFP reporter, another encoded sgRNA and contained insert of HDR template designed to introduce RS1 c.625C>T mutation. Such nanoparticles were successfully delivered and internalized by human iPSCs and mouse retinas, the efficiency of internalization was significantly improved by mixing with BSA. The delivery of ND particles led to introduction of RS1 c.625C>T mutation in both human iPSCs and mouse retinas. Rs1 gene editing in mouse retinas resulted in several pathological features typical for XLRS, such as aberrant photoreceptor structure. To conclude, our ND-based CRISPR-Cas9 delivery system can be utilized as a tool for creating in vitro and in vivo disease models of XLRS. STATEMENT OF SIGNIFICANCE: X-linked retinoschisis (XLRS) is a prevalent hereditary retinal disease, which is caused by mutations in RS1 gene, whose product is important for structural organization of the retina. The recent development of genome editing techniques such as CRISPR-Cas9 significantly improved the prospects for better understanding the pathology and development of treatment for this disease. Firstly, gene editing can allow development of appropriate in vitro and in vivo disease models; secondly, CRISPR-Cas9 can be applied for gene therapy by removing the disease-causative mutation in vivo. The major prerequisite for these approaches is to develop safe and efficient CRISPR-Cas9 delivery system. In this study, we tested specifically modified nanodiamonds for such a delivery system. We were able to introduce Rs1 mutation into the mouse retina and, importantly, observed several XLRS-specific effects.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Nanodiamantes/química , Retina/metabolismo , Retinosquise/genética , Animais , Sequência de Bases , Proteínas do Olho/genética , Edição de Genes , Humanos , Masculino , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/patologia
15.
Bioconjug Chem ; 19(10): 1972-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18808169

RESUMO

Modularly assembled targeting nanoparticles were synthesized through self-assembly of targeting moieties on surfaces of functional nanoparticles. Specific molecular recognition of nickel nitrilotriacetate on Fe3O4 nanoparticles with hexahistidine tag on RGD4C peptides results in precisely controlled orientation of the targeting peptides. Better selectivity of the self-assembled RGD4C-Fe3O4 nanoparticles targeting oral cancer cells than that achievable through a conventional chemical cross-link strategy was demonstrated by means of atomic absorption spectrometry (AAS). An oral cancer hamster model was applied to reveal specific in vivo targeting and MR molecular imaging contrast in cancer lesions expressing alphavbeta3 integrin. Both AAS and MRI revealed that the self-assembled nanoparticles improved the targeting efficiency and reduced the hepatic uptake as compared with the conventional chemical cross-link particles. We investigated the biosafety, biodistribution, and kinetics of the nanoparticles and found that the nanoparticles were significantly cleared from the liver and kidneys after one week. By recombining the desired targeting moiety and various functional nanoparticles through self-assembly, this new modularly designed platform has the capability of enhancing the efficiency of targeted diagnosis and therapies for a wide spectrum of biomedical applications.


Assuntos
Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Absorção , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/toxicidade , Humanos , Masculino , Teste de Materiais , Camundongos , Neoplasias Bucais/diagnóstico , Níquel/química , Ácido Nitrilotriacético/química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Distribuição Tecidual
16.
Sci Rep ; 4: 4531, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24681781

RESUMO

Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated.

17.
Nanoscale ; 5(20): 9626-32, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23852110

RESUMO

We report on a polarized Raman study on mechanically cleaved single-layer graphene films. Under a specific orientation of scattering measurement, the width and position of the G peak change with the incident polarization direction, while the integrated intensity of that is unaltered. This phenomenon is explained by a proposed mode in which the peak is contributed by a mixture of un-, compressive-, and tensile-strained G sub-modes. The compression and tension are both uniaxial and approximately perpendicular to each other. They are undesigned and located in either separated or overlapped sub-areas within the probed local region. Compared to the unstrained wavenumber of 1580 cm(-1), compression induces a blue shift while tension causes a red one. The sub-modes correlated with the light polarization through different relationships split the G peak into three sub-ones. We develop a method to quantitatively analyze the positions, widths, intensities, and polarization dependences of sub-peaks. This analysis quantitatively reveals local strain, which changes with the detected area of a graphene film. The method presented here can be extended to detect the strain distribution in the film and thus is a promising technology for graphene characterization.

18.
Biomaterials ; 31(25): 6545-54, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605206

RESUMO

An artificial, targeted, light-activated nanoscissor (ATLANS) was developed for precision photonic cleavage of DNA at selectable target sequences. The ATLANS is comprised of nanoparticle core and a monolayer of hydrazone-modified triplex-forming oligonucleotides (TFOs), which recognize and capture the targeted DNA duplex. Upon photo-illumination (lambda = 460 nm), the attached hydrazone scissor specifically cleaves the targeted DNA at a pre-designed nucleotide pair. Electrophoretic mobility shift and co-precipitation assays revealed sequence-specific binding with the short-fragment and long-form plasmid DNA of both TFO and TFO-nanoparticle probes. Upon photo-illumination, ATLANS introduced a precise double-stranded break 12bp downstream the TFO binding sequence and down-regulated the target gene in HeLa cell system. Gold nanoparticles multiplexed the cutting efficiency and potential for simultaneous manipulation of multiple targets, as well as protected DNA from non-specific photo-damage. This photon-mediated DNA manipulation technology will facilitate high spatial and temporal precision in simultaneous silencing at the genome level, and advanced simultaneous manipulation of multiple targeted genes.


Assuntos
DNA/genética , DNA/metabolismo , Regulação para Baixo , Hidrazonas/metabolismo , Nanopartículas/química , Clivagem do DNA , Genes , Ouro/química , Células HeLa , Humanos , Hidrazonas/química , Processos Fotoquímicos
20.
J Am Chem Soc ; 128(35): 11606-11, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16939285

RESUMO

This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Eletrólitos/química , Metais/química , Nanotubos/química , Nanofios/química , Sulfatos/química , Materiais Revestidos Biocompatíveis/química , DNA/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nitrato de Prata/química , Solubilidade , Solventes/química , Propriedades de Superfície , Compostos de Estanho/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA