RESUMO
Host cell entry of vaccinia virus (a poxvirus) proceeds through multiple steps that involve many viral proteins to mediate cell infection. Upon binding to cells, vaccinia virus membrane fuses with host membranes via a viral entry fusion protein complex comprising 11 proteins: A16, A21, A28, F9, G3, G9, H2, J5, L1, L5 and O3. Despite vaccinia virus having two infectious forms, mature and enveloped, that have different membrane layers, both forms require an identical viral entry fusion complex for membrane fusion. Components of the poxvirus entry fusion complex that have been structurally assessed to date share no known homology with all other type I, II and III viral fusion proteins, and the large number of fusion protein components renders it a unique system to investigate poxvirus-mediated membrane fusion. Here, we determined the NMR structure of a truncated version of vaccinia A28 protein. We also expressed a soluble H2 protein and showed that A28 interacts with H2 protein at a 1:1 ratio in vitro. Furthermore, we performed extensive in vitro alanine mutagenesis to identify A28 protein residues that are critical for H2 binding, entry fusion complex formation, and virus-mediated membrane fusion. Finally, we used molecular dynamic simulations to model full-length A28-H2 subcomplex in membranes. In summary, we characterized vaccinia virus A28 protein and determined residues important in its interaction with H2 protein and membrane components. We also provide a structural model of the A28-H2 protein interaction to illustrate how it forms a 1:1 subcomplex on a modeled membrane.
Assuntos
Poxviridae , Vacínia , Humanos , Vaccinia virus/metabolismo , Simulação de Dinâmica Molecular , Proteínas Virais de Fusão/metabolismo , Poxviridae/metabolismo , Internalização do VírusRESUMO
The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P-N-B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g-1 h-1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.
RESUMO
IMPORTANCE: Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.
Assuntos
Fusão de Membrana , Vaccinia virus , Proteínas Virais de Fusão , Internalização do Vírus , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismoRESUMO
Vaccinia mature virus requires A26 envelope protein to mediate acid-dependent endocytosis into HeLa cells in which we hypothesized that A26 protein functions as an acid-sensitive membrane fusion suppressor. Here, we provide evidence showing that N-terminal domain (aa1-75) of A26 protein is an acid-sensitive region that regulates membrane fusion. Crystal structure of A26 protein revealed that His48 and His53 are in close contact with Lys47, Arg57, His314 and Arg312, suggesting that at low pH these His-cation pairs could initiate conformational changes through protonation of His48 and His53 and subsequent electrostatic repulsion. All the A26 mutant mature viruses that interrupted His-cation pair interactions of His48 and His 53 indeed have lost virion infectivity. Isolation of revertant viruses revealed that second site mutations caused frame shifts and premature termination of A26 protein such that reverent viruses regained cell entry through plasma membrane fusion. Together, we conclude that viral A26 protein functions as an acid-sensitive fusion suppressor during vaccinia mature virus endocytosis.
Assuntos
Endocitose , Fusão de Membrana , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Vaccinia virus/genética , Proteínas Virais/genéticaRESUMO
A highly stable framework of an organic-inorganic hybrid indium phosphate (NTOU-7) was synthesized under hydro(solvo)thermal conditions and structurally characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. This is the first example of a post-transition-metal phosphate incorporating tetradentate organic molecules. The In atoms in the inorganic layers are coordinated by imidazole rings of the 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene linkers to generate a new solid-state material. NTOU-7 showed high chemical stability and displayed excellent performance for both dye removal and ractopamine (RAC) detection, which are interesting environmental and biosensing applications. The sensitivity and ultralow limit of detection were 607.9 µA·µM·cm-2 and 2.74 × 10-10 mol·L-1 (0.08 ppb), which meet the requirements stated by the Codex Alimentarius Commission (10 ppb RAC residue in beef and pork). The detection performance was confirmed by sensing spiked-in RAC in real pork samples. We also reported the synthesis, characterization, structural stability, dye removal, and sensing properties of NTOU-7.
Assuntos
Corantes/química , Corantes/isolamento & purificação , Índio/química , Fenetilaminas/química , Fosfinas/química , Corantes/análise , Limite de DetecçãoRESUMO
For decades, high-resolution 1H NMR spectroscopy has been routinely utilized to analyze both naturally occurring steroid hormones and synthetic steroids, which play important roles in regulating physiological functions in humans. Because the 1H signals are inevitably superimposed and entangled with various JH-H splitting patterns, such that the individual 1H chemical shift and associated JH-H coupling identities are hardly resolved. Given this, applications of thess information for elucidating steroidal molecular structures and steroid/ligand interactions at the atomic level were largely restricted. To overcome, we devoted to unraveling the entangled JH-H splitting patterns of two similar steroidal compounds having fully unsaturated protons, i.e., androstanolone and epiandrosterone (denoted as 1 and 2, respectively), in which only hydroxyl and ketone substituents attached to C3 and C17 were interchanged. Here we demonstrated that the JH-H values deduced from 1 and 2 are universal and applicable to other steroids, such as testosterone, 3ß, 21-dihydroxygregna-5-en-20-one, prednisolone, and estradiol. On the other hand, the 1H chemical shifts may deviate substantially from sample to sample. In this communication, we propose a simple but novel scheme for resolving the complicate JH-H splitting patterns and 1H chemical shifts, aiming for steroidal structure determinations.
Assuntos
Espectroscopia de Ressonância Magnética , Acoplamento Oxidativo , Esteroides/química , Modelos Biológicos , Conformação Molecular , Estrutura MolecularRESUMO
Gramicidin A (gA) forms several convertible conformations in different environments. In this study, we investigated the effect of calcium halides on the molecular state and antimicrobial activity of gramicidin A. The molecular state of gramicidin A is highly affected by the concentration of calcium salt and the type of halide anion. Gramicidin A can exist in two states that can be characterized by circular dichroism (CD), mass, nuclear magnetic resonance (NMR) and fluorescence spectroscopy. In State 1, the main molecular state of gramicidin A is as a dimer, and the addition of calcium salt can convert a mixture of four species into a single species, which is possibly a left-handed parallel double helix. In State 2, the addition of calcium halides drives gramicidin A dissociation and denaturation from a structured dimer into a rapid equilibrium of structured/unstructured monomer. We found that the abilities of dissociation and denaturation were highly dependent on the type of halide anion. The dissociation ability of calcium halides may play a vital role in the antimicrobial activity, as the structured monomeric form had the highest antimicrobial activity. Herein, our study demonstrated that the molecular state was correlated with the antimicrobial activity.
Assuntos
Antibacterianos/farmacologia , Compostos de Cálcio/química , Gramicidina/farmacologia , Antibacterianos/química , Brometos/química , Cloreto de Cálcio/química , Dicroísmo Circular , Gramicidina/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacosRESUMO
The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Simulação por Computador , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Vírion/química , Vírion/genéticaRESUMO
To enhance the detection sensitivity of target clinical protein biomarkers, a simple and rapid nanoprobe-based immuno-affinity mass spectrometry assay employing biocompatible monodisperse magnetic nanoparticles (MNPs) is reported herein. The MNPs were synthesized via a streamlined protocol that includes (a) fabrication of core MNPs using the thermal decomposition method to minimize aggregation, (b) surface protection by gold coating (MNP@Au) and surfactant coating using MNP@IGEPAL to improve hydrophilicity, and lastly, (c) oriented functionalization of antibodies to maximize immuno-affinity. The enrichment performances of the monodisperse MNPs for the C-reactive protein (CRP) serum biomarker were then evaluated and compared with aggregated magnetic nanoparticles synthesized from the conventional co-precipitation method (MNP(CP)). The detection sensitivity for CRP at an extremely low amount of serum sample (1 µL) was enhanced â¼19- and â¼15-fold when monodisperse MNP@Au and MNP@IGEPAL, respectively, were used. Furthermore, the detection sensitivity of CRP by this approach (1 ng mL(-1), S/N = 3) provided a 1000-fold sensitivity enhancement to the clinical cut-off (1 µg mL(-1)) of CRP. We supposed that these observed improvements are due to the enhanced nanoparticle dispersibility and size uniformity which eliminated completely other non-specific binding of high-abundance serum proteins. Most interestingly, the enrichment efficiency correlates more closely with the MNP dispersibility than the ligand density. Our investigation revealed the critical role of MNP dispersibility, as well as provided mechanistic insight into its impact on immunoaffinity enrichment and detection of CRP in one drop of serum sample. This strategy offers an essential advantage over the other methods by providing a simple and facile biofunctionalization protocol while maintaining excellent solvent dispersibility of MNPs.
Assuntos
Proteína C-Reativa/análise , Imunoensaio/métodos , Nanopartículas de Magnetita/química , Anticorpos Imobilizados/química , Biomarcadores/análise , Biomarcadores/sangue , Ouro/química , Humanos , Limite de Detecção , Nanopartículas de Magnetita/ultraestrutura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Many viruses contain surface spikes or protrusions that are essential for virus entry. These surface structures can thereby be targeted by antiviral drugs to treat viral infections. Nervous necrosis virus (NNV), a simple nonenveloped virus in the genus of betanodavirus, infects fish and damages aquaculture worldwide. NNV has 60 conspicuous surface protrusions, each comprising three protrusion domains (P-domain) of its capsid protein. NNV uses protrusions to bind to common receptors of sialic acids on the host cell surface to initiate its entry via the endocytic pathway. However, structural alterations of NNV in response to acidic conditions encountered during this pathway remain unknown, while detailed interactions of protrusions with receptors are unclear. Here, we used cryo-EM to discover that Grouper NNV protrusions undergo low-pH-induced compaction and resting. NMR and molecular dynamics (MD) simulations were employed to probe the atomic details. A solution structure of the P-domain at pH 7.0 revealed a long flexible loop (amino acids 311-330) and a pocket outlined by this loop. Molecular docking analysis showed that the N-terminal moiety of sialic acid inserted into this pocket to interact with conserved residues inside. MD simulations demonstrated that part of this loop converted to a ß-strand under acidic conditions, allowing for P-domain trimerization and compaction. Additionally, a low-pH-favored conformation is attained for the linker connecting the P-domain to the NNV shell, conferring resting protrusions. Our findings uncover novel pH-dependent conformational switching mechanisms underlying NNV protrusion dynamics potentially utilized for facilitating NNV entry, providing new structural insights into complex NNV-host interactions with the identification of putative druggable hotspots on the protrusion.
Assuntos
Proteínas do Capsídeo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Nodaviridae , Internalização do Vírus , Nodaviridae/efeitos dos fármacos , Nodaviridae/fisiologia , Nodaviridae/química , Concentração de Íons de Hidrogênio , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Animais , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/virologiaRESUMO
Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.
RESUMO
There is a growing interest in developing paramagnetic nanoparticles as responsive magnetic resonance imaging (MRI) contrast agents, which feature switchable T1 image contrast of water protons upon biochemical cues for better discerning diseases. However, performing an MRI is pragmatically limited by its cost and availability. Hence, a facile, routine method for measuring the T1 contrast is highly desired in early-stage development. This work presents a single-point inversion recovery (IR) nuclear magnetic resonance (NMR) method that can rapidly evaluate T1 contrast change by employing a single, optimized IR pulse sequence that minimizes water signal for "off-state" nanoparticles and allows for sensitively measuring the signal change with "switch-on" T1 contrast. Using peptide-induced liposomal gadopentetic acid (Gd3+-DTPA) release and redox-sensitive manganese oxide (MnO2) nanoparticles as a demonstration of generality, this method successfully evaluates the T1 shortening of water protons caused by liposomal Gd3+-DTPA release and Mn2+ formation from MnO2 reduction. Furthermore, the NMR measurement is highly correlated to T1-weighted MRI scans, suggesting its feasibility to predict the MRI results at the same field strength. This NMR method can be a low-cost, time-saving alternative for pre-MRI evaluation for a diversity of responsive T1 contrast systems.
Assuntos
Meios de Contraste , Gadolínio DTPA , Lipossomos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Compostos de Manganês , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Lipossomos/química , Compostos de Manganês/química , Espectroscopia de Ressonância Magnética/métodos , Gadolínio DTPA/química , Óxidos/química , Nanopartículas/químicaRESUMO
In this report, we used stepwise orthogonal click chemistry (SOCC) involving strain-promoted azide-alkyne cycloaddition (SPAAC) and microwave-assisted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) to assemble an anticancer drug (paclitaxel, PTX) and a targeting ligand (trivalent galactoside, TGal) on a fluorescent silicon oxide nanoparticle (NP) by using dialkyne linker 8 as a bridge. The fluorescent NH2@Cy3SiO2NP was fabricated using a competition method to incorporate Cy3 without loss of the original surface amine density on the NPs. The concept of SOCC was first investigated in a solution-phase model study that showed quantitative reaction yield. In the fabrication of TGal-PTX@Cy3SiO2NP, the expensive compound azido-functionalized PTX 12 used in SPAAC can be easily recovered due to the absence of other reagents in the reaction mixture. High loading of the sugar ligand on the NP surface serves a targeting function and also overcomes the low water solubility of PTX. Confocal fluorescence microscopy and cytotoxicity assay showed that TGal-PTX@Cy3SiO2NP was taken up by HepG2 cells and was affected by the microtubule skeleton in these cells and inhibited the proliferation of these cells in a dose-dependent manner. The presence of a fluorescent probe, a targeting ligand, and an anticancer drug on the multifunctional TGal-PTX@Cy3SiO2NP allows for real-time imaging, specific cancer-cell targeting, and the cell-killing effect which is better than free PTX.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Galactose/química , Nanopartículas/química , Paclitaxel/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Click , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologiaRESUMO
The signal intensity in double cross-polarization (DCP) NMR experiments is critically dependent on the experimental parameters, which include the rf field strength, carrier frequency, and magic-angle spinning (MAS) frequency. In this systematic study, we have monitored {(1)H}/(31)P/(13)C DCP signals from monosaccharide α-D-[UL-(13)C(6)] galactopyranosyl 1-phosphate (GalP) at a MAS frequency of 13 kHz, at which only double quantum cross-polarization (CP) coherence transfer is allowed. To lessen the stringent requirements for these experimental parameters, we have implemented linear ramp pulse, adiabatic ramp-shaped pulse, and block pulse during the period of (31)P/(13)C CP. We unravel the CP matching profiles with respect to these parameters by monitoring the (31)P/(13)C signal while varying the rf field strength and carrier frequency. For comparison, we extracted the selectivity bandwidth from the full width at half maximum (FWHM) of the matching profiles, in units of frequency (kHz), and found bandwidths of 1.1, 14, and 22 kHz for the matching profiles of the (13)C rf field strength and the (13)C and (31)P carrier frequencies, respectively, for a linear ramp pulse CP. These bandwidths are broader than the measured values in an adiabatic-shaped pulse CP (0.8, 10, and 12 kHz), as well as in block CP (0.3, 7, and 10 kHz) experiments. We demonstrate that the linear ramp pulse CP is superior to both block CP and adiabatic-shaped CP in lessening the stringent requirements of the aforementioned experimental settings for DCP experiments.
RESUMO
Vaccinia virus (VACV) belonging to the poxvirus family enters the host cell via two different entry pathways; either endocytosis or virus/host cell membrane fusion. With respect to the virus/host cell membrane fusion, there are eleven viral membrane proteins forming a complicated entry-fusion complex (EFC), including A28, A21, A16, F9, G9, G3, H2, J5, L5, L1 and O3, to conduct the fusion function. These EFC components are highly conserved in all poxviruses and each of them is essential and necessary for the fusion activity. So far, with the exceptions of L1 and F9 whose crystal structures were reported, the structural information about other EFC components remains largely unclear. We aim to conduct a structural and functional investigation of VACV virus-entry membrane protein A28. In this work, we expressed and purified a truncated form of A28 (14 kDa; residues 38-146, abbreviated as tA28 hereinafter), with deletion of its transmembrane domain (residues 1-22) and a hydrophobic segment (residues 23-37). And the assignments of its backbone and side chain 1H, 13C and 15N chemical shifts of tA28 are reported. The secondary structure propensity from TALOS+ indicates that tA28 does contain three α-helices, six ß-strands and connecting loops. Aside from this, we demonstrated that tA28 does interact with fusion suppressor viral protein A26 (residues 351-500) by the 1H-15N HSQC spectrum. We interpret that A28 binding to A26 deactivates EFC fusion activity. The current study provides a valuable framework towards further structural analyses of this protein and for better understanding virus/host cell membrane fusion mechanism in association with virus entry.
Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas Virais de Fusão , Vacínia , Vaccinia virusRESUMO
Vaccinia viral envelope protein A27 (110 amino acids) specifically interacts with heparin (HP) or heparan sulfate (HS) proteoglycans for cell surface attachment. To examine the binding mechanism, a truncated soluble form of A27 (sA27-aa; residues 21-84 of A27) with Cys(71) and Cys(72) mutated to Ala was used as the parent molecule. sA27-aa consists of two structurally distinct domains, a flexible Arg/Lys-rich heparin-binding site (HBS) (residues 21-32; (21)STKAAKKPEAKR(32)) and a rigid coiled-coil domain (residues 43-84), both essential for the specific binding. As shown by surface plasmon resonance (SPR), the binding affinity of sA27-aa for HP (K(A) = 1.25 x 10(8) m(-1)) was approximately 3 orders of magnitude stronger than that for nonspecific binding, such as to chondroitin sulfate (K(A) = 1.65 x 10(5) m(-1)). Using site-directed mutagenesis of HBS and solution NMR, we identified a "KKPE" segment with a turn-like conformation that mediates specific HP binding. In addition, a double mutant T22K/A25K in which the KKPE segment remained intact showed an extremely high affinity for HP (K(A) = 1.9 x 10(11) m(-1)). Importantly, T22K/A25K retained the binding specificity for HP and HS but not chondroitin sulfate, as shown by in vitro SPR and in vivo cell adhesion and competitive binding assays. Molecular modeling of the HBS was performed by dynamics simulations and provides an explanation of the specific binding mechanism in good agreement with the site-directed mutagenesis and SPR results. We conclude that a turn-like structure introduced by the KKPE segment in vaccinia viral envelope protein A27 is responsible for its specific binding to HP and to HS on cell surfaces.
Assuntos
Proteínas de Transporte/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Modelos Moleculares , Vaccinia virus/metabolismo , Proteínas Virais de Fusão/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células HeLa , Heparina/química , Heparitina Sulfato/química , Heparitina Sulfato/genética , Humanos , Proteínas de Membrana , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/fisiologia , Vaccinia virus/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genéticaRESUMO
Tumor necrosis factor alpha (TNF-alpha) activates the nuclear factor kappaB (NF-kappaB) signaling pathway that regulates expression of many cellular factors playing important roles in innate immune responses and inflammation in infected hosts. Poxviruses employ many strategies to inhibit NF-kappaB activation in cells. In this report, we describe a poxvirus host range protein, CP77, which blocked NF-kappaB activation by TNF-alpha. Immunofluorescence analyses revealed that nuclear translocation of NF-kappaB subunit p65 protein in TNF-alpha-treated HeLa cells was blocked by CP77. CP77 did so without blocking IkappaBalpha phosphorylation, suggesting that upstream kinase activation was not affected by CP77. Using GST pull-down, we showed that CP77 bound to the NF-kappaB subunit p65 through the N-terminal six-ankyrin-repeat region in vitro. CP77 also bound to Cullin-1 and Skp1 of the SCF complex through a C-terminal 13-amino-acid F-box-like sequence. Both regions of CP77 are required to block NF-kappaB activation. We thus propose a model in which poxvirus CP77 suppresses NF-kappaB activation by two interactions: the C-terminal F-box of CP77 binding to the SCF complex and the N-terminal six ankyrins binding to the NF-kappaB subunit p65. In this way, CP77 attenuates innate immune response signaling in cells. Finally, we expressed CP77 or a CP77 F-box deletion protein from a vaccinia virus host range mutant (VV-hr-GFP) and showed that either protein was able to rescue the host range defect, illustrating that the F-box region, which is important for NF-kappaB modulation and binding to SCF complex, is not required for CP77's host range function. Consistently, knocking down the protein level of NF-kappaB did not relieve the growth restriction of VV-hr-GFP in HeLa cells.
Assuntos
Proteínas F-Box/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Poxviridae/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Citocinas/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Humanos , Quinase I-kappa B/metabolismo , Dados de Sequência Molecular , Fosforilação , Poxviridae/efeitos dos fármacos , Poxviridae/genética , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Nervous necrosis virus (NNV) is a non-enveloped virus that causes massive mortality in aquaculture fish production worldwide. Recently X-ray crystallography and single particle cryo-EM have independently determined the icosahedral capsid of NNV to near-atomic resolutions to show the capsid protein is composed of a S-domain (shell) and a P-domain (protrusion) connected by a linker. However, the structure of the spike on NNV capsid made of trimeric P-domains was poorly resolved by cryo-EM. In addition, comparing the spike in the cryo-EM with that by X-ray suggests that the P-domain can move drastically relative to the shell, implicating an underlying structural mechanism during the infectious process. Yet, it remains unclear that such structural re-arrangement is ascribed to the change of the conformation of individual P-domain or in the association among P-domains. Given that molecular structure of the P-domain in solution phase is still lacking, we aim to determine the structure of the P-domain by solution NMR spectroscopy. In this communication, we report backbone and side chain 1H, 13C and 15N chemical shifts of the P-domain (residues 221-338) together with the linker region (residues 214-220), revealing ten ß-strands via chemical shift propensity analysis. Our findings are consistent with the X-ray crystal structure of the P-domain reported elsewhere. The current study provides a framework towards further structural analyses of the P-domain in various solution conditions.
Assuntos
Proteínas do Capsídeo/química , Nodaviridae/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Domínios Proteicos , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
(13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state NMR spectroscopy has been employed to analyze four vitamin D compounds, namely vitamin D3 (D3), vitamin D2 (D2), and the precursors ergosterol (Erg) and 7-dehydrocholesterol (7DHC). The (13)C NMR spectrum of D3 displays a doublet pattern for each of the carbon atoms, while that of Erg contains both singlet and doublet patterns. In the cases of 7DHC and D2, the (13)C spectra display various multiplet patterns, viz. singlets, doublets, triplets, and quartets. To overcome the signal overlap between the (13)C resonances of protonated and unprotonated carbons, we have subjected these vitamin D compounds to 1D (1)H-filtered (13)C CP/MAS and {(1)H}/(13)C heteronuclear correlation (Hetcor) NMR experiments. As a result, assisted by solution NMR data, all of the (13)C resonances have been successfully assigned to the respective carbon atoms of these vitamin D compounds. The (13)C multiplets are interpreted due to the presence of s-cis and s-trans configurations in the alpha- and beta-molecular conformers, consistent with computer molecular modeling determined by molecular dynamics and energy minimization calculations. To further characterize the ring conformations in D3, we have successfully extracted chemical shift tensor elements for the (13)C doublets. It is demonstrated that (13)C solid-state NMR spectroscopy provides a robust and high sensitive means of characterizing molecular conformations in vitamin D compounds.
Assuntos
Vitamina D/química , Anisotropia , Simulação por Computador , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação MolecularRESUMO
In this work, we used high resolution NMR spectroscopy to investigate metal cation chelation by the steroidal drug 1,4-pregnadiene-11ß,17α,21-triol-3,20-dione (Prednisolone; abbreviated as Prd). Prd/MgCl2 and Prd/CaCl2 mixtures were prepared at eight different molar ratios. Using two-dimensional 1H/13C heteronuclear correlation spectroscopy, we were able to resolve most of the 1H signals, except those at 1.4-1.55â¯ppm, where signals for H15ß, H16α and Me-19 are superimposed. The chelation sites were determined by the cation concentration-dependent 13C signals. Both ring A and ring D of Prd were found to be involved in Mg2+ chelation, whereas only ring A was involved in Ca2+ chelation. The dihedral angles deduced from the 3JH-H coupling constants indicated that ring D of Prd might undergo rather small, but different, distortions in the presence of Mg2+ and Ca2+. Additionally, using the continuous variation method, we deduced that the stoichiometric ratios of the Prd/Mg2+ and Prd/Ca2+ complexes were 1:1 and 2:1, respectively. All of the evidence led us to conclude that the Prd/Mg2+ and Prd/Ca2+ complexes are mediated by different chelating mechanisms.