Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525758

RESUMO

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Assuntos
Cromossomos de Mamíferos/química , Animais , Fator de Ligação a CCCTC , Ciclo Celular , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Camundongos , Proteínas Repressoras/metabolismo , Transcrição Gênica
2.
Development ; 143(5): 810-21, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932671

RESUMO

KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Histonas/química , Lisina/química , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/fisiologia , Animais , Aorta/fisiologia , Ciclo Celular , Ecocardiografia , Eletrofisiologia , Elementos Facilitadores Genéticos , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Histona-Lisina N-Metiltransferase , Hipóxia/metabolismo , Metilação , Camundongos , Microscopia de Fluorescência , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/química , Regiões Promotoras Genéticas , Análise de Sequência de RNA
3.
Nat Commun ; 11(1): 5612, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154377

RESUMO

Current models propose that boundaries of mammalian topologically associating domains (TADs) arise from the ability of the CTCF protein to stop extrusion of chromatin loops by cohesin. While the orientation of CTCF motifs determines which pairs of CTCF sites preferentially stabilize loops, the molecular basis of this polarity remains unclear. By combining ChIP-seq and single molecule live imaging we report that CTCF positions cohesin, but does not control its overall binding dynamics on chromatin. Using an inducible complementation system, we find that CTCF mutants lacking the N-terminus cannot insulate TADs properly. Cohesin remains at CTCF sites in this mutant, albeit with reduced enrichment. Given the orientation of CTCF motifs presents the N-terminus towards cohesin as it translocates from the interior of TADs, these observations explain how the orientation of CTCF binding sites translates into genome folding patterns.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Cromossomos de Mamíferos/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Cricetinae , Drosophila , Camundongos , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Relação Estrutura-Atividade , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA