Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
2.
Eur Respir J ; 60(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35450969

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) increases pulmonary vascular permeability by activation of the PGE2 receptor 3 (EP3), which may explain adverse pulmonary effects of the EP1/EP3 receptor agonist sulprostone in patients. In addition, PGE2 contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae via acid sphingomyelinase (ASMase). Yet, the roles of PGE2 and EP3 in this pathway are unknown. We hypothesised that EP3 receptor activation may increase pulmonary vascular permeability by activation of TRPC6, and thus, synergise with ASMase-mediated TRPC6 recruitment in PAF-induced lung oedema. METHODS: In isolated lungs, we measured increases in endothelial calcium (ΔCa2+) or lung weight (Δweight), and endothelial caveolar TRPC6 abundance as well as phosphorylation. RESULTS: PAF-induced ΔCa2+ and Δweight were attenuated in EP3-deficient mice. Sulprostone replicated PAF-induced ΔCa2+ and Δweight which were blocked by pharmacological/genetic inhibition of TRPC6, ASMase or Src-family kinases (SrcFK). PAF, but not sulprostone, increased TRPC6 abundance in endothelial caveolae. Immunoprecipitation revealed PAF- and sulprostone-induced tyrosine-phosphorylation of TRPC6 that was prevented by inhibition of phospholipase C (PLC) or SrcFK. PLC inhibition also blocked sulprostone-induced ΔCa2+ and Δweight, as did inhibition of SrcFK or inhibitory G-protein (Gi) signalling. CONCLUSIONS: EP3 activation triggers pulmonary oedema via Gi-dependent activation of PLC and subsequent SrcFK-dependent tyrosine phosphorylation of TRPC6. In PAF-induced lung oedema, this TRPC6 activation coincides with ASMase-dependent caveolar recruitment of TRPC6, resulting in rapid endothelial Ca2+ influx and barrier failure.


Assuntos
Edema Pulmonar , Animais , Cálcio/metabolismo , Edema , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Pulmão/metabolismo , Camundongos , Fator de Ativação de Plaquetas , Esfingomielina Fosfodiesterase , Canal de Cátion TRPC6 , Fosfolipases Tipo C/metabolismo , Tirosina , Quinases da Família src
3.
Respir Res ; 23(1): 189, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841089

RESUMO

BACKGROUND: PDGFR-inhibition by the tyrosine kinase inhibitor (TKI) nintedanib attenuates the progress of idiopathic pulmonary fibrosis (IPF). However, the effects of PDGF-BB on the airway tone are almost unknown. We studied this issue and the mechanisms beyond, using isolated perfused lungs (IPL) of guinea pigs (GPs) and precision-cut lung slices (PCLS) of GPs and humans. METHODS: IPL: PDGF-BB was perfused after or without pre-treatment with the TKI imatinib (perfused/nebulised) and its effects on the tidal volume (TV), the dynamic compliance (Cdyn) and the resistance were studied. PCLS (GP): The bronchoconstrictive effects of PDGF-BB and the mechanisms beyond were evaluated. PCLS (human): The bronchoconstrictive effects of PDGF-BB and the bronchorelaxant effects of imatinib were studied. All changes of the airway tone were measured by videomicroscopy and indicated as changes of the initial airway area. RESULTS: PCLS (GP/human): PDGF-BB lead to a contraction of airways. IPL: PDGF-BB decreased TV and Cdyn, whereas the resistance did not increase significantly. In both models, inhibition of PDGFR-(ß) (imatinib/SU6668) prevented the bronchoconstrictive effect of PDGF-BB. The mechanisms beyond PDGF-BB-induced bronchoconstriction include activation of MAP2K and TP-receptors, actin polymerisation and Ca2+-sensitisation, whereas the increase of Ca2+ itself and the activation of EP1-4-receptors were not of relevance. In addition, imatinib relaxed pre-constricted human airways. CONCLUSIONS: PDGFR regulates the airway tone. In PCLS from GPs, this regulatory mechanism depends on the ß-subunit. Hence, PDGFR-inhibition may not only represent a target to improve chronic airway disease such as IPF, but may also provide acute bronchodilation in asthma. Since asthma therapy uses topical application. This is even more relevant, as nebulisation of imatinib also appears to be effective.


Assuntos
Actinas , Asma , Animais , Becaplermina , Cobaias , Humanos , Mesilato de Imatinib/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Niacinamida , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-sis , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Tromboxanos
4.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360619

RESUMO

qRT-PCR still remains the most widely used method for quantifying gene expression levels, although newer technologies such as next generation sequencing are becoming increasingly popular. A critical, yet often underappreciated, problem when analysing qRT-PCR data is the selection of suitable reference genes. This problem is compounded in situations where up to 25% of all genes may change (e.g., due to leukocyte invasion), as is typically the case in ARDS. Here, we examined 11 widely used reference genes for their suitability in commonly used models of acute lung injury (ALI): ventilator-induced lung injury (VILI), in vivo and ex vivo, lipopolysaccharide plus mechanical ventilation (MV), and hydrochloric acid plus MV. The stability of reference gene expression was determined using the NormFinder, BestKeeper, and geNorm algorithms. We then proceeded with the geNorm results because this is the only algorithm that provides the number of reference genes required to achieve normalisation. We chose interleukin-6 (Il-6) and C-X-C motif ligand 1 (Cxcl-1) as the genes of interest to analyse and demonstrate the impact of inappropriate normalisation. Reference gene stability differed between the ALI models and even within the subgroup of VILI models, no common reference gene index (RGI) could be determined. NormFinder, BestKeeper, and geNorm produced slightly different, but comparable results. Inappropriate normalisation of Il-6 and Cxcl1 gene expression resulted in significant misinterpretation in all four ALI settings. In conclusion, choosing an inappropriate normalisation strategy can introduce different kinds of bias such as gain or loss as well as under- or overestimation of effects, affecting the interpretation of gene expression data.


Assuntos
Lesão Pulmonar Aguda/genética , Algoritmos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica , Marcadores Genéticos , Lesão Pulmonar Aguda/patologia , Animais , Feminino , Camundongos , Padrões de Referência
5.
Allergy ; 75(3): 603-615, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31494944

RESUMO

BACKGROUND: Allergic diseases and especially allergic asthma are widespread diseases with high prevalence in childhood, but also in adults. Acid sphingomyelinase (ASM) is a key regulator of the sphingolipid pathway. Previous studies defined the association of ASM with the pathogenesis of TH 1-directed lung diseases like cystic fibrosis and acute lung injury. Here, we define the role of ASM in TH 2-regulated allergic bronchial asthma. METHODS: To determine the role of Asm under baseline conditions, wild-type (WT) and Asm-/- mice were ventilated with a flexiVent setup and bronchial hyperresponsiveness was determined using acetylcholine. Flow cytometry and cytokine measurements in bronchoalveolar lavage fluid and lung tissue were followed by in vitro TH 2 differentiations with cells from WT and Asm-/- mice and blockade of Asm with amitriptyline. As proof of principle, we conducted an ovalbumin-induced model of asthma in WT- and Asm-/-  mice. RESULTS: At baseline, Asm-/- mice showed better lung mechanics, but unaltered bronchial hyperresponsiveness. Higher numbers of Asm-/- T cells in bronchoalveolar lavage fluid released lower levels of IL-4 and IL-5, and these results were paralleled by decreased production of typical TH 2 cytokines in Asm-/- T lymphocytes in vitro. This phenotype could be imitated by incubation of T cells with amitriptyline. In the ovalbumin asthma model, Asm-/- animals were protected from high disease activity and showed better lung functions and lower levels of eosinophils and TH 2 cytokines. CONCLUSION: Asm deficiency could induce higher numbers of TH 2 cells in the lung, but those cells release decreased TH 2 cytokine levels. Hereby, Asm-/- animals are protected from bronchial asthma, which possibly offers novel therapeutic strategies, for example, with ASM blockade.


Assuntos
Asma , Hiper-Reatividade Brônquica , Animais , Líquido da Lavagem Broncoalveolar , Citocinas , Modelos Animais de Doenças , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Esfingomielina Fosfodiesterase/genética , Células Th2
6.
Mediators Inflamm ; 2020: 3650508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410851

RESUMO

Tumor necrosis factor (TNF) is a well-known mediator of sepsis. In many cases, sepsis results in multiple organ injury including the lung with acute respiratory distress syndrome (ARDS). More than 20-year-old studies have suggested that TNF may be directly responsible for organ injury during sepsis. However, these old studies are inconclusive, because they relied on human rather than conspecific TNF, which was contaminated with endotoxin in most studies. In this study, we characterized the direct effects of intravenous murine endotoxin-free TNF on cardiovascular functions and organ injury in mice with a particular focus on the lungs. Because of the relevance of the acid sphingomyelinase in sepsis, ARDS, and caspase-independent cell death, we also included acid sphingomyelinase-deficient (ASM-/-) mice. ASM-/- and wild-type (WT) mice received 50 µg endotoxin-free murine TNF intravenously alone or in combination with the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (zVAD) and were ventilated at low tidal volume while lung mechanics were followed. Blood pressure was stabilized by intra-arterial fluid support, and body temperature was kept at 37°C to delay lethal shock and to allow investigation of blood gases, lung histopathology, proinflammatory mediators, and microvascular permeability 6 hours after TNF application. Besides the lungs, also the kidneys and liver were examined. TNF elicited the release of inflammatory mediators and a high mortality rate, but failed to injure the lungs, kidneys, or liver of healthy mice significantly within 6 hours. Mortality in WT mice was most likely due to sepsis-like shock, as indicated by metabolic acidosis, high procalcitonin levels, and cardiovascular failure. ASM-/- mice were protected from TNF-induced hypotension and reflex tachycardia and also from mortality. In WT mice, intravenous exogenous TNF does not cause organ injury but induces a systemic inflammatory response with cardiovascular failure, in which the ASM plays a role.


Assuntos
Lesão Pulmonar/metabolismo , Choque/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Permeabilidade Capilar , Endotoxinas/metabolismo , Feminino , Inflamação , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Neutrófilos/metabolismo , Oligopeptídeos/farmacologia , Permeabilidade , Respiração Artificial , Sepse
7.
Respir Res ; 20(1): 111, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170998

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) inhibit the platelet derived growth factor receptor (PDGFR) and gain increasing significance in the therapy of proliferative diseases, e.g. pulmonary arterial hypertension (PAH). Moreover, TKIs relax pulmonary vessels of rats and guinea pigs. So far, it is unknown, whether TKIs exert relaxation in human and murine pulmonary vessels. Thus, we studied the effects of TKIs and the PDGFR-agonist PDGF-BB in precision-cut lung slices (PCLS) from both species. METHODS: The vascular effects of imatinib (mice/human) or nilotinib (human) were studied in Endothelin-1 (ET-1) pre-constricted pulmonary arteries (PAs) or veins (PVs) by videomicroscopy. Baseline initial vessel area (IVA) was defined as 100%. With regard to TKI-induced relaxation, K+-channel activation was studied in human PAs (PCLS) and imatinib/nilotinib-related changes of cAMP and cGMP were analysed in human PAs/PVs (ELISA). Finally, the contractile potency of PDGF-BB was explored in PCLS (mice/human). RESULTS: Murine PCLS: Imatinib (10 µM) relaxed ET-1-pre-constricted PAs to 167% of IVA. Vice versa, 100 nM PDGF-BB contracted PAs to 60% of IVA and pre-treatment with imatinib or amlodipine prevented PDGF-BB-induced contraction. Murine PVs reacted only slightly to imatinib or PDGF-BB. Human PCLS: 100 µM imatinib or nilotinib relaxed ET-1-pre-constricted PAs to 166% or 145% of IVA, respectively, due to the activation of KATP-, BKCa2+- or Kv-channels. In PVs, imatinib exerted only slight relaxation and nilotinib had no effect. Imatinib and nilotinib increased cAMP in human PAs, but not in PVs. In addition, PDGF-BB contracted human PAs/PVs, which was prevented by imatinib. CONCLUSIONS: TKIs relax pre-constricted PAs/PVs from both, mice and humans. In human PAs, the activation of K+-channels and the generation of cAMP are relevant for TKI-induced relaxation. Vice versa, PDGF-BB contracts PAs/PVs (human/mice) due to PDGFR. In murine PAs, PDGF-BB-induced contraction depends on intracellular calcium. So, PDGFR regulates the tone of PAs/PVs. Since TKIs combine relaxant and antiproliferative effects, they may be promising in therapy of PAH.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Artéria Pulmonar/fisiologia , Especificidade da Espécie , Vasodilatação/fisiologia
8.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29773606

RESUMO

Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.


Assuntos
Experimentação Animal/ética , Pesquisa Biomédica/normas , Modelos Animais de Doenças , Transtornos Respiratórios , Comitês Consultivos , Animais , Europa (Continente) , Humanos , Sociedades Médicas
9.
Respir Res ; 19(1): 120, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921306

RESUMO

BACKGROUND: Platelet-derived growth factor (PDGF)-BB and its receptor PDGFR are highly expressed in pulmonary hypertension (PH) and mediate proliferation. Recently, we showed that PDGF-BB contracts pulmonary veins (PVs) and that this contraction is prevented by inhibition of PDGFR-ß (imatinib/SU6668). Here, we studied PDGF-BB-induced contraction and downstream-signalling in isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of guinea pigs (GPs). METHODS: In IPLs, PDGF-BB was perfused after or without pre-treatment with imatinib (perfused/nebulised), the effects on the pulmonary arterial pressure (PPA), the left atrial pressure (PLA) and the capillary pressure (Pcap) were studied and the precapillary (Rpre) and postcapillary resistance (Rpost) were calculated. Perfusate samples were analysed (ELISA) to detect the PDGF-BB-induced release of prostaglandin metabolites (TXA2/PGI2). In PCLS, the contractile effect of PDGF-BB was evaluated in pulmonary arteries (PAs) and PVs. In PVs, PDGF-BB-induced contraction was studied after inhibition of PDGFR-α/ß, L-Type Ca2+-channels, ROCK/PKC, prostaglandin receptors, MAP2K, p38-MAPK, PI3K-α/γ, AKT/PKB, actin polymerisation, adenyl cyclase and NO. Changes of the vascular tone were measured by videomicroscopy. In PVs, intracellular cAMP was measured by ELISA. RESULTS: In IPLs, PDGF-BB increased PPA, Pcap and Rpost. In contrast, PDGF-BB had no effect if lungs were pre-treated with imatinib (perfused/nebulised). In PCLS, PDGF-BB significantly contracted PVs/PAs which was blocked by the PDGFR-ß antagonist SU6668. In PVs, inhibition of actin polymerisation and inhibition of L-Type Ca2+-channels reduced PDGF-BB-induced contraction, whereas inhibition of ROCK/PKC had no effect. Blocking of EP1/3- and TP-receptors or inhibition of MAP2K-, p38-MAPK-, PI3K-α/γ- and AKT/PKB-signalling prevented PDGF-BB-induced contraction, whereas inhibition of EP4 only slightly reduced it. Accordingly, PDGF-BB increased TXA2 in the perfusate, whereas PGI2 was increased in all groups after 120 min and inhibition of IP-receptors did not enhance PDGF-BB-induced contraction. Moreover, PDGF-BB increased cAMP in PVs and inhibition of adenyl cyclase enhanced PDGF-BB-induced contraction, whereas inhibition of NO-formation only slightly increased it. CONCLUSIONS: PDGF-BB/PDGFR regulates the pulmonary vascular tone by the generation of prostaglandins, the increase of calcium, the activation of MAPK- or PI3K/AKT/mTOR signalling and actin remodelling. More insights in PDGF-BB downstream-signalling may contribute to develop new therapeutics for PH.


Assuntos
Actinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Veias Pulmonares/fisiologia , Sistema Vasomotor/metabolismo , Indutores da Angiogênese/farmacologia , Animais , Becaplermina , Cálcio/metabolismo , Feminino , Cobaias , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Polimerização/efeitos dos fármacos , Prostaglandinas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Veias Pulmonares/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Sistema Vasomotor/efeitos dos fármacos
10.
Curr Opin Crit Care ; 24(1): 1-9, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29176329

RESUMO

PURPOSE OF REVIEW: ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS: Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPß, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY: We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Inflamassomos/fisiologia , Inflamação/patologia , Inflamação/fisiopatologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/fisiopatologia , Citocinas/imunologia , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/terapia , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia , Teoria de Sistemas
11.
BMC Pulm Med ; 18(1): 174, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466430

RESUMO

BACKGROUND: The acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood. METHODS: Wild-type (wt) and RAG2-/- mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA). RESULTS: In wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2-/- mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice. CONCLUSION: Following LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages.


Assuntos
Lesão Pulmonar Aguda/imunologia , Citocinas/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Linfócitos T/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos , Pulmão/fisiopatologia , Macrófagos Alveolares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/induzido quimicamente
12.
Respir Res ; 18(1): 32, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178968

RESUMO

BACKGROUND: Recently, the IMPRES study revealed that systemic imatinib improves exercise capacity in patients with advanced pulmonary arterial hypertension. Imatinib blocks the tyrosine kinase activity of the platelet-derived growth factor (PDGF)-receptor (PDGFR), acts antiproliferative and relaxes pulmonary arteries. However so far, the relaxant effects of imatinib on pulmonary veins (PVs) and on the postcapillary resistance are unknown, although pulmonary hypertension (PH) due to left heart disease (LHD) is most common and primarily affects PVs. Next, it is unknown whether activation of PDGFR alters the pulmonary venous tone. Due to the reported adverse effects of systemic imatinib, we evaluated the effects of nebulized imatinib on the postcapillary resistance. METHODS: Precision-cut lung slices (PCLS) were prepared from guinea pigs. PVs were pre-constricted with Endothelin-1 (ET-1) and the imatinib-induced relaxation was studied by videomicroscopy; PDGF-BB-related vascular properties were evaluated as well. The effects of perfused/nebulized imatinib on the postcapillary resistance were studied in cavine isolated perfused lungs (IPL). Intracellular cAMP/cGMP was measured by ELISA in PVs. RESULTS: In PCLS, imatinib (100 µM) relaxed pre-constricted PVs (126%). In PVs, imatinib increased cAMP, but not cGMP and inhibition of adenyl cyclase or protein kinase A reduced the imatinib-induced relaxation. Further, inhibition of KATP-channels, [Formula: see text]-channels or Kv-channels diminished the imatinib-induced relaxation, whereas inhibition of NO-signaling was without effect. In the IPL, perfusion or nebulization of imatinib reduced the ET-1-induced increase of the postcapillary resistance. In PCLS, PDGF-BB contracted PVs, which was blocked by imatinib and by the PDGFR-ß kinase inhibitor SU6668, whereas inhibition of PDGFR-α (ponatinib) had no significant effect. Conversely, PDGFR-ß kinase inhibitors (SU6668/DMPQ) relaxed PVs pre-constricted with ET-1 comparable to imatinib, whereas the PDGFR-α kinase inhibitor ponatinib did not. CONCLUSIONS: Imatinib-induced relaxation depends on cAMP and on the activation of K+-channels. Perfused or nebulized imatinib significantly reduces the postcapillary resistance in the pre-constricted (ET-1) pulmonary venous bed. Hence, nebulization of imatinib is feasible and might reduce systemic side effects. Conversely, PDGF-BB contracts PVs by activation of PDGFR-ß suggesting that imatinib-induced relaxation depends on PDGFR-ß-antagonism. Imatinib combines short-term relaxant and long-term antiproliferative effects. Thus, imatinib might be a promising therapy for PH due to LHD.


Assuntos
Mesilato de Imatinib/administração & dosagem , Proteínas Proto-Oncogênicas c-sis/metabolismo , Veias Pulmonares/efeitos dos fármacos , Veias Pulmonares/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Animais , Becaplermina , Relação Dose-Resposta a Droga , Feminino , Cobaias , Inibidores de Proteínas Quinases/administração & dosagem , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem
13.
Anesthesiology ; 126(5): 909-922, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28277372

RESUMO

BACKGROUND: One important explanation for the detrimental effects of conventional mechanical ventilation is the biotrauma hypothesis that ventilation may trigger proinflammatory responses that subsequently cause lung injury. This hypothesis has frequently been studied in so-called one-hit models (overventilation of healthy lungs) that so far have failed to establish an unequivocal link between inflammation and hypoxemic lung failure. This study was designed to develop a one-hit biotrauma model. METHODS: Mice (six per group) were ventilated for up to 7 h (positive end-expiratory pressure 2 cm H2O) and received 300 µl/h fluid support. Series_1: initial plateau pressures of 10, 24, 27, or 30 cm H2O. Series_2: ventilation with pressure release at 34 cm H2O and initial plateau pressure of 10, 24, 27, or 30 cm H2O. To study the significance of inflammation, the latter groups were also pretreated with the steroid dexamethasone. RESULTS: Within 7 h, 20 of 24 mice ventilated with plateau pressure of 27 cm H2O or more died of a catastrophic lung failure characterized by strongly increased proinflammatory markers and a precipitous decrease in pulmonary compliance, blood pressure, and oxygenation. Pretreatment with dexamethasone reduced inflammation, but prolonged median survival time by 30 min. CONCLUSIONS: Our findings demonstrate a sharp distinction between ventilation with 24 cm H2O that was well tolerated and ventilation with 27 cm H2O that was lethal for most animals due to catastrophic lung failure. In the former case, inflammation was benign and in the latter, a by-product that only accelerated lung failure. The authors suggest that biotrauma-when defined as a ventilation-induced and inflammation-dependent hypoxemia-is difficult to study in murine one-hit models of ventilation, at least not within 7 h. (Anesthesiology 2017; 126:909-22).


Assuntos
Inflamação/complicações , Inflamação/fisiopatologia , Modelos Biológicos , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Mediators Inflamm ; 2017: 1515389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522896

RESUMO

Flow conditions critically regulate endothelial cell functions in the vasculature. Reduced shear stress resulting from disturbed blood flow can drive the development of vascular inflammatory lesions. On endothelial cells, the transmembrane chemokine CX3CL1/fractalkine promotes vascular inflammation by functioning as a surface-expressed adhesion molecule and by becoming released as soluble chemoattractant for monocytic cells expressing the receptor CX3CR1. Here, we report that endothelial cells from human artery, vein, or microvasculature constitutively express CX3CL1 when cultured under static conditions. Stimulation with TNFα under static or very low shear stress conditions strongly upregulates CX3CL1 expression. By contrast, CX3CL1 induction is profoundly reduced when cells are exposed to higher shear stress. When endothelial cells were grown and subsequently stimulated with TNFα under low shear stress, strong adhesion of monocytic THP-1 cells to endothelial cells was observed. This adhesion was in part mediated by transmembrane CX3CL1 as demonstrated with a neutralizing antibody. By contrast, no CX3CL1-dependent adhesion to stimulated endothelium was observed at high shear stress. Thus, during early stages of vascular inflammation, low shear stress typically seen at atherosclerosis-prone regions promotes the induction of endothelial CX3CL1 and monocytic cell recruitment, whereas physiological shear stress counteracts this inflammatory activation of endothelial cells.


Assuntos
Adesão Celular/fisiologia , Quimiocina CX3CL1/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Adesão Celular/genética , Quimiocina CX3CL1/genética , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Células Endoteliais/citologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Células THP-1
15.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L720-32, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851257

RESUMO

Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts.


Assuntos
Albuminas/metabolismo , Células Endoteliais/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Transcitose , Animais , Bovinos , Caveolina 1/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Ativação Enzimática , Humanos , Pulmão/irrigação sanguínea , Masculino , Microdomínios da Membrana/metabolismo , Microvasos/citologia , Transporte Proteico , Ratos Sprague-Dawley , Trombina/fisiologia
16.
Blood ; 123(26): 4077-88, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24833351

RESUMO

Inflammation is a key process in various diseases, characterized by leukocyte recruitment to the inflammatory site. This study investigates the role of a disintegrin and a metalloproteinase (ADAM) 10 and ADAM17 for leukocyte migration in vitro and in a murine model of acute pulmonary inflammation. Inhibition experiments or RNA knockdown indicated that monocytic THP-1 cells and primary human neutrophils require ADAM10 but not ADAM17 for efficient chemokine-induced cell migration. Signaling and adhesion events that are linked to cell migration such as p38 and ρ GTPase-family activation, F-actin polymerization, adhesion to fibronectin, and up-regulation of α5 integrin were also dependent on ADAM10 but not ADAM17. This was confirmed with leukocytes isolated from mice lacking either ADAM10 or ADAM17 in all hematopoietic cells (vav 1 guanine nucleotide exchange factor [Vav]-Adam10(-/-) or Vav-Adam17(-/-) mice). In lipopolysaccharide-induced acute pulmonary inflammation, alveolar recruitment of neutrophils and monocytes was transiently increased in Vav-Adam17(-/-) but steadily reduced in Vav-Adam10(-/-) mice. This deficit in alveolar leukocyte recruitment was also observed in LysM-Adam10(-/-) mice lacking ADAM10 in myeloid cells and correlated with protection against edema formation. Thus, with regard to leukocyte migration, leukocyte-expressed ADAM10 but not ADAM17 displays proinflammatory activities and may therefore serve as a target to limit inflammatory cell recruitment.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Movimento Celular , Proteínas de Membrana/metabolismo , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Pneumonia/enzimologia , Alvéolos Pulmonares/enzimologia , Edema Pulmonar/enzimologia , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Doença Aguda , Secretases da Proteína Precursora do Amiloide/genética , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Alvéolos Pulmonares/patologia , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/genética , Edema Pulmonar/patologia
17.
J Immunol ; 192(2): 722-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24342803

RESUMO

In acute pulmonary inflammation, danger is first recognized by epithelial cells lining the alveolar lumen and relayed to vascular responses, including leukocyte recruitment and increased endothelial permeability. We supposed that this inflammatory relay critically depends on the immunological function of lung interstitial cells such as smooth muscle cells (SMC). Mice with smooth muscle protein-22α promotor-driven deficiency of the disintegrin and metalloproteinase (ADAM) 17 (SM22-Adam17(-/-)) were investigated in models of acute pulmonary inflammation (LPS, cytokine, and acid instillation). Underlying signaling mechanisms were identified in cultured tracheal SMC and verified by in vivo reconstitution experiments. SM22-Adam17(-/-) mice showed considerably decreased cytokine production and vascular responses in LPS- or acid-induced pulmonary inflammation. In vitro, ADAM17 deficiency abrogated cytokine release of primary SMC stimulated with LPS or supernatant of acid-exposed epithelial cells. This was explained by a loss of ADAM17-mediated growth factor shedding. LPS responses required ErbB1/epidermal growth factor receptor transactivation by TGFα, whereas acid responses required ErbB4 transactivation by neuregulins. Finally, LPS-induced pulmonary inflammation in SM22-Adam17(-/-) mice was restored by exogenous TGFα application, confirming the involvement of transactivation pathways in vivo. This highlights a new decisive immunological role of lung interstitial cells such as SMC in promoting acute pulmonary inflammation by ADAM17-dependent transactivation.


Assuntos
Proteínas ADAM/metabolismo , Receptores ErbB/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Pneumonia/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Oncogênicas v-erbB/genética , Pneumonia/genética , Regiões Promotoras Genéticas/genética , Receptor ErbB-4 , Ativação Transcricional/genética , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
18.
Am J Respir Crit Care Med ; 192(3): 315-23, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25945397

RESUMO

RATIONALE: Lung-protective ventilatory strategies have been widely used in patients with acute respiratory distress syndrome (ARDS), but the ARDS mortality rate remains unacceptably high and there is no proven pharmacologic therapy. OBJECTIVES: Mechanical ventilation can induce oxidative stress and lung fibrosis, which may contribute to high dependency on ventilator support and increased ARDS mortality. We hypothesized that the novel cytokine, midkine (MK), which can be up-regulated in oxidative stress, plays a key role in the pathogenesis of ARDS-associated lung fibrosis. METHODS: Blood samples were collected from 17 patients with ARDS and 10 healthy donors. Human lung epithelial cells were challenged with hydrogen chloride followed by mechanical stretch for 72 hours. Wild-type and MK gene-deficient (MK(-/-)) mice received two-hit injury of acid aspiration and mechanical ventilation, and were monitored for 14 days. MEASUREMENTS AND MAIN RESULTS: Plasma concentrations of MK were higher in patients with ARDS than in healthy volunteers. Exposure to mechanical stretch of lung epithelial cells led to an epithelial-mesenchymal transition profile associated with increased expression of angiotensin-converting enzyme, which was attenuated by silencing MK, its receptor Notch2, or NADP reduced oxidase 1. An increase in collagen deposition and hydroxyproline level and a decrease in lung tissue compliance seen in wild-type mice were largely attenuated in MK(-/-) mice. CONCLUSIONS: Mechanical stretch can induce an epithelial-mesenchymal transition phenotype mediated by the MK-Notch2-angiotensin-converting enzyme signaling pathway, contributing to lung remodeling. The MK pathway is a potential therapeutic target in the context of ARDS-associated lung fibrosis.


Assuntos
Citocinas/sangue , Fibrose Pulmonar/fisiopatologia , Respiração Artificial , Síndrome do Desconforto Respiratório/fisiopatologia , Transdução de Sinais/fisiologia , Estresse Mecânico , Animais , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Midkina , Fibrose Pulmonar/sangue , Síndrome do Desconforto Respiratório/sangue
19.
Am J Physiol Lung Cell Mol Physiol ; 308(4): L325-43, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25480335

RESUMO

Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.


Assuntos
Proteínas ADAM/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Pneumonia Estafilocócica/metabolismo , Proteólise , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Asma/metabolismo , Asma/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Fator de Crescimento Epidérmico/metabolismo , Humanos , Pneumonia Estafilocócica/patologia , Infecções Estafilocócicas , Migração Transendotelial e Transepitelial , Fator de Necrose Tumoral alfa/metabolismo
20.
J Immunol ; 191(3): 1316-23, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23785120

RESUMO

Transcription factor cAMP response element modulator (CREM)α contributes to various cellular and molecular abnormalities in T cells, including increased IL-17 and decreased IL-2 expression. For development of acute lung injury (ALI), the invasion and regulation of immune cells are highly important, but the role of T cells remains unclear. In this study, we show that CREMα is upregulated in LPS-induced ALI. During the early phase of ALI (day 1), T cell-specific CREMα overexpression enhances the numbers of T cells and expression of TNF-α in bronchoalveolar lavage fluid and deteriorates lung functions. On day 3 of ALI, CREMα transgenic mice present a stronger inflammatory response with higher levels of TNF-α, IL-6, and IL-17 correlating with increased numbers of T cells and neutrophils in bronchoalveolar lavage fluid, whereas expression of Foxp3 and IL-2 and numbers of regulatory T cells are decreased. These changes result in restricted lung function in CREMα transgenic mice. Finally, an adoptive transfer of CREM(-/-) CD4(+) T cells, but not of wild-type T cells into RAG-1(-/-) mice results in ameliorated disease levels. Thus, levels of CREM in T cells determine the outcome of ALI, and CREMα transgenic animals represent a model in which proinflammatory T cells aggravate ALI in different phases of the disease. Given the fact that patients with autoimmune diseases like systemic lupus erythematosus show higher levels of CREMα and an increased susceptibility toward infectious complications, our finding is of potential clinical significance and may enable new therapeutic strategies.


Assuntos
Lesão Pulmonar Aguda/imunologia , Linfócitos T CD4-Positivos/imunologia , Modulador de Elemento de Resposta do AMP Cíclico , Lipopolissacarídeos/farmacologia , Linfócitos T Reguladores/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Transferência Adotiva , Animais , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Modulador de Elemento de Resposta do AMP Cíclico/biossíntese , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/genética , Inflamação/genética , Inflamação/imunologia , Interleucina-17/biossíntese , Interleucina-2/biossíntese , Interleucina-6/biossíntese , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA