Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 172(4): 731-743.e12, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425491

RESUMO

The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Metabolismo Energético , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Transformada , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Quinase Induzida por NF-kappaB
2.
Immunity ; 42(1): 15-7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607455

RESUMO

The biogenesis of beige fat is poorly understood. In recent issues of Nature and Cell, Brestoff et al. (2014) and Lee et al. (2015) demonstrate that resident innate lymphoid cells in subcutaneous fat generate and activate beige adipocytes, producing thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/imunologia , Imunidade Inata/imunologia , Linfócitos/metabolismo , Linfócitos/fisiologia , Obesidade/imunologia , Animais , Feminino , Humanos , Masculino
3.
J Biol Chem ; 288(13): 9272-83, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23386617

RESUMO

RGC1 and RGC2 comprise a functional RalGAP complex (RGC) that suppresses RalA activity. The PI3-kinase/Akt signaling pathway activates RalA through phosphorylation-mediated inhibition of the RGC. Here we identify a novel phosphorylation-dependent interaction between 14-3-3 and the RGC. 14-3-3 binds to the complex through an Akt-phosphorylated residue, threonine 715, on RGC2. Interaction with 14-3-3 does not alter in vitro activity of the GTPase-activating protein complex. However, blocking the interaction between 14-3-3 and RGC2 in cells increases suppression of RalA activity by the RGC, suggesting that 14-3-3 inhibits the complex through a non-catalytic mechanism. Together, these data show that 14-3-3 negatively regulates the RGC downstream of the PI3-kinase/Akt signaling pathway.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Células 3T3 , Adipócitos/citologia , Motivos de Aminoácidos , Androstadienos/farmacologia , Animais , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais , Wortmanina
4.
Sci Signal ; 10(471)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325821

RESUMO

Insulin stimulates glucose uptake through the translocation of the glucose transporter GLUT4 to the plasma membrane. The exocyst complex tethers GLUT4-containing vesicles to the plasma membrane, a process that requires the binding of the G protein (heterotrimeric guanine nucleotide-binding protein) RalA to the exocyst complex. We report that upon activation of RalA, the protein kinase TBK1 phosphorylated the exocyst subunit Exo84. Knockdown of TBK1 blocked insulin-stimulated glucose uptake and GLUT4 translocation; knockout of TBK1 in adipocytes blocked insulin-stimulated glucose uptake; and ectopic overexpression of a kinase-inactive mutant of TBK1 reduced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The phosphorylation of Exo84 by TBK1 reduced its affinity for RalA and enabled its release from the exocyst. Overexpression of a kinase-inactive mutant of TBK1 blocked the dissociation of the TBK1/RalA/exocyst complex, and treatment of 3T3-L1 adipocytes with specific inhibitors of TBK1 reduced the rate of complex dissociation. Introduction of phosphorylation-mimicking or nonphosphorylatable mutant forms of Exo84 blocked insulin-stimulated GLUT4 translocation. Thus, these data indicate that TBK1 controls GLUT4 vesicle engagement and disengagement from the exocyst, suggesting that exocyst components not only constitute a tethering complex for the GLUT4 vesicle but also act as "gatekeepers" controlling vesicle fusion at the plasma membrane.


Assuntos
Adipócitos/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Transportador de Glucose Tipo 4/genética , Hipoglicemiantes/farmacologia , Immunoblotting , Camundongos , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Proteínas de Transporte Vesicular/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
5.
Nat Commun ; 6: 6047, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25581158

RESUMO

The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes.


Assuntos
Gluconeogênese , Fígado/metabolismo , Transdução de Sinais , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Idoso , Aminopiridinas/farmacologia , Animais , AMP Cíclico/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Gluconeogênese/efeitos dos fármacos , Glucose-6-Fosfatase/metabolismo , Humanos , Inflamação/patologia , Resistência à Insulina , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Adrenérgicos beta/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Gordura Subcutânea/efeitos dos fármacos , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Mol Biol Cell ; 25(19): 3059-69, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103239

RESUMO

Insulin-stimulated glucose uptake in fat and muscle is mediated by the major facilitative glucose transporter Glut4. Insulin controls the trafficking of Glut4 to the plasma membrane via regulation of a series of small G proteins, including RalA and Rab10. We demonstrate here that Rab10 is a bona fide target of the GTPase-activating protein AS160, which is inhibited after phosphorylation by the protein kinase Akt. Once activated, Rab10 can increase the GTP binding of RalA by recruiting the Ral guanyl nucleotide exchange factor, Rlf/Rgl2. Rab10 and RalA reside in the same pool of Glut4-storage vesicles in untreated cells, and, together with Rlf, they ensure maximal glucose transport. Overexpression of membrane-tethered Rlf compensates for the loss of Rab10 in Glut4 translocation, suggesting that Rab10 recruits Rlf to membrane compartments for RalA activation and that RalA is downstream of Rab10. Together these studies identify a new G protein cascade in the regulation of insulin-stimulated Glut4 trafficking and glucose uptake.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Transporte Biológico , Células COS , Linhagem Celular , Chlorocebus aethiops , Ativação Enzimática , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteínas rab de Ligação ao GTP/agonistas
7.
Diabetes ; 63(4): 1340-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24379350

RESUMO

Chronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity and systemic metabolism, in part, through the actions of proinflammatory cytokines. Whether obesity engages an adaptive mechanism to counteract chronic inflammation in adipose tissues has not been elucidated. Here we identified otopetrin 1 (Otop1) as a component of a counterinflammatory pathway that is induced in WAT during obesity. Otop1 expression is markedly increased in obese mouse WAT and is stimulated by tumor necrosis factor-α in cultured adipocytes. Otop1 mutant mice respond to high-fat diet with pronounced insulin resistance and hepatic steatosis, accompanied by augmented adipose tissue inflammation. Otop1 attenuates interferon-γ (IFN-γ) signaling in adipocytes through selective downregulation of the transcription factor STAT1. Using a tagged vector, we found that Otop1 physically interacts with endogenous STAT1. Thus, Otop1 defines a unique target of cytokine signaling that attenuates obesity-induced adipose tissue inflammation and plays an adaptive role in maintaining metabolic homeostasis in obesity.


Assuntos
Tecido Adiposo/patologia , Inflamação/prevenção & controle , Proteínas de Membrana/farmacologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Homeostase/efeitos dos fármacos , Inflamação/imunologia , Resistência à Insulina/fisiologia , Interferon gama/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo
8.
Elife ; 2: e01119, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24368730

RESUMO

Obesity produces a chronic inflammatory state involving the NFκB pathway, resulting in persistent elevation of the noncanonical IκB kinases IKKε and TBK1. In this study, we report that these kinases attenuate ß-adrenergic signaling in white adipose tissue. Treatment of 3T3-L1 adipocytes with specific inhibitors of these kinases restored ß-adrenergic signaling and lipolysis attenuated by TNFα and Poly (I:C). Conversely, overexpression of the kinases reduced induction of Ucp1, lipolysis, cAMP levels, and phosphorylation of hormone sensitive lipase in response to isoproterenol or forskolin. Noncanonical IKKs reduce catecholamine sensitivity by phosphorylating and activating the major adipocyte phosphodiesterase PDE3B. In vivo inhibition of these kinases by treatment of obese mice with the drug amlexanox reversed obesity-induced catecholamine resistance, and restored PKA signaling in response to injection of a ß-3 adrenergic agonist. These studies suggest that by reducing production of cAMP in adipocytes, IKKε and TBK1 may contribute to the repression of energy expenditure during obesity. DOI: http://dx.doi.org/10.7554/eLife.01119.001.


Assuntos
Adipócitos/enzimologia , Tecido Adiposo Branco/enzimologia , Catecolaminas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/enzimologia , Obesidade/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Aminopiridinas/farmacologia , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Dioxóis/farmacologia , Modelos Animais de Doenças , Metabolismo Energético , Ativação Enzimática , Células HEK293 , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Inflamação/genética , Canais Iônicos/metabolismo , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Obesidade/genética , Fosforilação , Poli I-C/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Proteína Desacopladora 1
9.
Nat Med ; 19(3): 313-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396211

RESUMO

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


Assuntos
Aminopiridinas/farmacologia , Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Resistência à Insulina , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antialérgicos/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Ativação Enzimática , Fígado Gorduroso/tratamento farmacológico , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Quinase I-kappa B/metabolismo , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Obesidade/imunologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA