Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EuroIntervention ; 18(13): e1120-e1128, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36214318

RESUMO

BACKGROUND: Preclinical models have provided key insights into the response of local tissues to radiofrequency (RF) renal denervation (RDN) that is unobtainable from human studies. However, the anatomic translatability of these models to the procedure in humans is incompletely understood.  Aims: We aimed to compare the renal arterial anatomy in normotensive pigs treated with RF-RDN to that of human cadavers to evaluate the suitability of normotensive pigs for determining the safety of RF-RDN. METHODS: Histopathologic analyses were performed on RF-treated renal arteries in a porcine model and untreated control renal arteries. Similar analyses were performed on untreated renal arteries from human cadavers.  Results: In both human and porcine renal arteries, the median number of nerves was lower in the more distal sections (the numbers in the proximal, middle, distal, 1st bifurcation, and 2nd bifurcation sections were 65, 58, 47, 22.5, and 14.7 in humans, respectively, and 39, 26, 29, 16.5, and 9.3 in the porcine models, respectively). Renal nerves were common in the regions between arteries and adjacent veins, but only 3% and 13% of the renal nerves in humans and pigs, respectively, were located behind the renal vein. The semiquantitative score of RF-induced renal arterial nerve necrosis was significantly greater at 7 days than 28 days (0.98 vs 0.75; p=0.01), and injury to surrounding organs was rarely observed. CONCLUSIONS: The distribution of nerve tissue and the relative distribution of extravascular anatomic structures along the renal artery was similar between humans and pigs, which validates the translational value of the normotensive porcine model for RDN.


Assuntos
Ablação por Cateter , Hipertensão , Suínos , Humanos , Animais , Simpatectomia/métodos , Rim/cirurgia , Rim/irrigação sanguínea , Artéria Renal/cirurgia , Artéria Renal/inervação , Pressão Sanguínea/fisiologia , Cadáver , Ablação por Cateter/métodos , Denervação , Hipertensão/cirurgia
2.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719758

RESUMO

Vascular calcification (VC) is concomitant with atherosclerosis, yet it remains uncertain why rupture-prone high-risk plaques do not typically show extensive calcification. Intraplaque hemorrhage (IPH) deposits erythrocyte-derived cholesterol, enlarging the necrotic core and promoting high-risk plaque development. Pro-atherogenic CD163+ alternative macrophages engulf hemoglobin:haptoglobin (HH) complexes at IPH sites. However, their role in VC has never been examined to our knowledge. Here we show, in human arteries, the distribution of CD163+ macrophages correlated inversely with VC. In vitro experiments using vascular smooth muscle cells (VSMCs) cultured with HH-exposed human macrophage - M(Hb) - supernatant reduced calcification, while arteries from ApoE-/- CD163-/- mice showed greater VC. M(Hb) supernatant-exposed VSMCs showed activated NF-κB, while blocking NF-κB attenuated the anticalcific effect of M(Hb) on VSMCs. CD163+ macrophages altered VC through NF-κB-induced transcription of hyaluronan synthase (HAS), an enzyme that catalyzes the formation of the extracellular matrix glycosaminoglycan, hyaluronan, within VSMCs. M(Hb) supernatants enhanced HAS production in VSMCs, while knocking down HAS attenuated its anticalcific effect. NF-κB blockade in ApoE-/- mice reduced hyaluronan and increased VC. In human arteries, hyaluronan and HAS were increased in areas of CD163+ macrophage presence. Our findings highlight an important mechanism by which CD163+ macrophages inhibit VC through NF-κB-induced HAS augmentation and thus promote the high-risk plaque development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Calcificação Vascular , Camundongos , Humanos , Animais , NF-kappa B , Ácido Hialurônico , Camundongos Knockout para ApoE , Macrófagos , Aterosclerose/complicações , Apolipoproteínas E/genética
3.
Neurosci Biobehav Rev ; 65: 292-312, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27048961

RESUMO

Neurodevelopmental disorders (NDDs) are highly prevalent and severely debilitating brain illnesses caused by aberrant brain growth and development. Resulting in cognitive, social, motor, language and affective disabilities, common NDDs include autism spectrum disorder (ASD), intellectual disability, communication/speech disorders, motor/tic disorders and attention deficit hyperactivity disorder. Affecting neurogenesis, glia/neuronal proliferation and migration, synapse formation and myelination, aberrant neural development occurs over a substantial period of time. Genetic, epigenetic, and environmental factors play a key role in NDD pathogenesis. Animal models are an indispensable tool to study NDDs. Paralleling clinical findings, we comprehensively evaluate various preclinical tests and models which target key (social, cognitive, motor) neurobehavioral domains of ASD and other common NDDs. Covering both traditional (rodent) and alternative NDD models, we outline the emerging areas of research and emphasize how preclinical models play a key role in gaining translational and mechanistic insights into NDDs and their therapy.


Assuntos
Transtorno Autístico , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista , Encéfalo , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA