Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2318229121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865277

RESUMO

Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.


Assuntos
Padronização Corporal , Interferência de RNA , Tribolium , Animais , Tribolium/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Retroalimentação Fisiológica , Animais Geneticamente Modificados , Relógios Biológicos/genética
2.
Pestic Biochem Physiol ; 176: 104870, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119215

RESUMO

RNA interference (RNAi) is a promising, selective pest control technology based on the silencing of targeted genes mediated by the degradation of mRNA after the ingestion of double-stranded (ds) RNA. However, the identification of the best target genes remains a challenge, because large scale screening is only feasible in lab model systems and it remains unclear, to what degree such data can be transferred to pest species. Here, we report on our efforts to transfer target genes found in a lab model to the mustard leaf beetle, Phaedon cochleariae. The mustard leaf beetle can be reared easily and resource-efficient in large quantities all year round and is an established chrysomelid pest for higher throughput screening approaches in the crop protection industry. Mustard leaf beetle transcriptome sequencing and assembly revealed genes orthologous to those previously described as highly efficient RNAi targets in the model beetle Tribolium castaneum. First, we observed mortality after injection of dsRNA targeting the respective orthologous genes in 2nd instar mustard beetle larvae. Next, we adopted a robust, automated multi-well plate foliar RNAi screening procedure with 2nd instar larvae of the mustard leaf beetle to assess those genes. Indeed, foliar application and oral uptake of dsRNA targeting the same genes resulted in larval mortality as well. The most effective target genes with a strong (lethal) phenotype - at dsRNA doses as low as 300 ng/leaf disc (equal to 9.6 g/ha) - were srp54k, rop, αSNAP, rpn7 and rpt3. Rather limited effects were observed after application of dsRNA targeting cactus, shibire and PP-α, though they had previously been shown to be highly lethal in red flour beetle. Importantly, our experiments demonstrated that the overall efficacy pattern obtained after oral dsRNA application was well correlated with the results obtained after dsRNA injection. RT-qPCR confirmed significant target gene knock-down after normalization by employing three reference genes shown to be stably expressed across life stages. In summary, several RNAi targeted genes elicited a strong lethal phenotype and significant target gene knock-down after feeding, suggesting P. cochleariae as a potential coleopteran screening model for foliarly applied exogenous RNAi.


Assuntos
Besouros , Tribolium , Animais , Besouros/genética , Larva , Mostardeira , Interferência de RNA , RNA de Cadeia Dupla/genética , Tribolium/genética
3.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
4.
BMC Genomics ; 16: 674, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334912

RESUMO

BACKGROUND: Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. RESULTS: We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. CONCLUSIONS: Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.


Assuntos
Genes de Insetos , Controle Biológico de Vetores , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Tribolium/genética , Animais , Sequência de Bases , Análise por Conglomerados , Sequência Conservada , Ontologia Genética
5.
Dev Biol ; 374(1): 174-84, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201022

RESUMO

Early embryonic stages differ significantly among related animal taxa while subsequent development converges at the conserved phylotypic stage before again diverging. Although this phenomenon has long been observed, its underlying genetic mechanisms remain enigmatic. The dipteran Drosophila melanogaster develops as a long germ embryo where the head anlagen form a cap at the anterior pole of the blastoderm. Consequently, the anterior and terminal maternal systems give crucial input for head patterning. However, in the short germ beetle Tribolium castaneum, as in most insects, the head anlagen is located at a ventral position distant from the anterior pole of the blastoderm. In line with these divergent embryonic anlagen, several differences in the axis formation between the insects have been discovered. We now ask to what extent patterning and morphogenesis of the anterior median region (AMR) of the head, including clypeolabral and stomodeal anlagen, differ among these insects. Unexpectedly, we find that Tc-huckebein is not a terminal gap gene and, unlike its Drosophila ortholog, is not involved in Tribolium head development. Instead, Tc-six3 acts upstream of Tc-crocodile and Tc-cap'n'collar to pattern posterior and anterior parts of the AMR, respectively. We further find that instead of huckebein, Tc-crocodile is required for stomodeum development by activating Tc-forkhead. Finally, a morphogenetic movement not found in Drosophila shapes the embryonic head of Tribolium. Apparently, with anterior displacement of the head anlagen during long germ evolution of Drosophila, the ancestral regulation by the bilaterian anterior control gene six3 was replaced by the anterior and terminal maternal systems, which were further elaborated by adding bicoid, tailless and huckebein as anterior regionalization genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Modelos Genéticos , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Tribolium/embriologia , Animais , Padronização Corporal , Drosophila melanogaster , Desenvolvimento Embrionário/genética , Evolução Molecular , Hibridização In Situ , Proteínas de Insetos/metabolismo , Interferência de RNA
6.
Insect Biochem Mol Biol ; 116: 103280, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740346

RESUMO

Fall armyworm, Spodoptera frugiperda (J.E. Smith) is a major lepidopteran pest of maize in Brazil and its control particularly relies on the use of genetically engineered crops expressing Bacillus thuringiensis (Bt) toxins such as Cry1F. However, control failures compromising the efficacy of this technology have been reported in many regions in Brazil, but the mechanism of Cry1F resistance in Brazilian fall armyworm populations remained elusive. Here we investigated the molecular mechanism of Cry1F resistance in two field-collected strains of S. frugiperda from Brazil exhibiting high levels of Cry1F resistance. We first rigorously evaluated several candidate reference genes for normalization of gene expression data across strains, larval instars and gut tissues, and identified ribosomal proteins L10, L17 and RPS3A to be most suitable. We then investigated the expression pattern of ten potential Bt toxin receptors/enzymes in both neonates and 2nd instar gut tissue of Cry1F resistant fall armyworm strains compared to a susceptible strain. Next we sequenced the ATP-dependent Binding Cassette subfamily C2 gene (ABCC2) and identified three mutated sites present in ABCC2 of both Cry1F resistant strains: two of them, a GY deletion (positions 788-789) and a P799 K/R amino acid substitution, located in a conserved region of ABCC2 extracellular loop 4 (EC4) and another amino acid substitution, G1088D, but in a less conserved region. We further characterized the role of the novel mutations present in EC4 by functionally expressing both wild type and mutated ABCC2 transporters in insect cell lines, and confirmed a critical role of both sites for Cry1F binding by cell viability assays. Finally, we assessed the frequency of the mutant alleles by pooled population sequencing and pyrosequencing in 40 fall armyworm populations collected from maize fields in different regions in Brazil. We found that the GY deletion being present at high frequency. However we also observed many rare alleles which disrupt residues between sites 783-799, and their diversity and abundance in field collected populations lends further support to the importance of the EC4 domain for Cry1F toxicity.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera/genética , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Brasil , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Alinhamento de Sequência , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento
7.
Nat Commun ; 6: 7822, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215380

RESUMO

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Oogênese/genética , Interferência de RNA , Tribolium/genética , Animais , Besouros/embriologia , Besouros/genética , Besouros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Larva/genética , Pupa/genética , Tribolium/embriologia , Tribolium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA