Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 214(3): 1307-1316, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28134981

RESUMO

Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed.


Assuntos
Conservação dos Recursos Naturais , Modelos Teóricos , Filogenia , Dispersão de Sementes/fisiologia , Clima Tropical , Geografia , Índia , Pólen/fisiologia , Plântula/fisiologia
2.
Int J Legal Med ; 129(4): 693-700, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25425095

RESUMO

Medicinal plants such as Cassia, Senna, and Chamaecrista (belonging to the family Fabaceae) are well known for their laxative properties. They are extensively used within indigenous health care systems in India and several other countries. India exports over 5000 metric tonnes per year of these specific herbal products, and the demand for natural health product market is growing at approximately 10-15% annually. The raw plant material used as active ingredients is almost exclusively sourced from wild populations. Consequently, it is widely suspected that the commercial herbal products claiming to contain these species may be adulterated or contaminated. In this study, we have attempted to assess product authentication and the extent of adulteration in the herbal trade of these species using DNA barcoding. Our method includes four common DNA barcode regions: ITS, matK, rbcL, and psbA-trnH. Analysis of market samples revealed considerable adulteration of herbal products: 50% in the case of Senna auriculata, 37% in Senna tora, and 8% in Senna alexandrina. All herbal products containing Cassia fistula were authentic, while the species under the genus Chamaecrista were not in trade. Our results confirm the suspicion that there is rampant herbal product adulteration in Indian markets. DNA barcodes such as that demonstrated in this study could be effectively used as a regulatory tool to control the adulteration of herbal products and contribute to restoring quality assurance and consumer confidence in natural health products.


Assuntos
Cassia/genética , Chamaecrista/genética , Código de Barras de DNA Taxonômico , Contaminação de Medicamentos , Fitoterapia , Senna/genética , DNA de Plantas , Humanos , Índia , Laxantes , Plantas Medicinais/genética , Controle de Qualidade , Análise de Sequência de DNA
3.
Antonie Van Leeuwenhoek ; 101(2): 323-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21898150

RESUMO

Rohitukine is a chromane alkaloid possessing anti-inflammatory, anti-cancer and immuno-modulatory properties. The compound was first reported from Amoora rohituka (Meliaceae) and later from Dysoxylum binectariferum (Meliaceae) and Schumanniophyton problematicum (Rubiaceae). Flavopiridol, a semi-synthetic derivative of rohitukine is a potent CDK inhibitor and is currently in Phase III clinical trials. In this study, the isolation of an endophytic fungus, Fusarium proliferatum (MTCC 9690) from the inner bark tissue of Dysoxylum binectariferum Hook.f (Meliaceae) is reported. The endophytic fungus produces rohitukine when cultured in shake flasks containing potato dextrose broth. The yield of rohitukine was 186 µg/100 g dry mycelial weight, substantially lower than that produced by the host tissue. The compound from the fungus was authenticated by comparing the LC-HRMS and LC-HRMS/MS spectra with those of the reference standard and that produced by the host plant. Methanolic extract of the fungus was cytotoxic against HCT-116 and MCF-7 human cancer cell lines (IC(50) = 10 µg/ml for both cancer cell lines).


Assuntos
Alcaloides/metabolismo , Antineoplásicos/metabolismo , Endófitos/metabolismo , Fusarium/metabolismo , Meliaceae/microbiologia , Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Endófitos/genética , Endófitos/isolamento & purificação , Fusarium/química , Fusarium/genética , Fusarium/isolamento & purificação , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Casca de Planta/microbiologia
4.
Microorganisms ; 9(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201292

RESUMO

Phosphate (Pi) availability has a strong influence on the symbiotic interaction between Arabidopsis and a recently described root-colonizing beneficial Trichoderma harzianum strain. When transferred to media with insoluble Ca3(PO4)2 as a sole Pi source, Arabidopsis seedlings died after 10 days. Trichoderma grew on the medium containing Ca3(PO4)2 and the fungus did colonize in roots, stems, and shoots of the host. The efficiency of the photosynthetic electron transport of the colonized seedlings grown on Ca3(PO4)2 medium was reduced and the seedlings died earlier, indicating that the fungus exerts an additional stress to the plant. Interestingly, the fungus initially alleviated the Pi starvation response and did not activate defense responses against the hyphal propagation. However, in colonized roots, the sucrose transporter genes SWEET11 and -12 were strongly down-regulated, restricting the unloading of sucrose from the phloem parenchyma cells to the apoplast. Simultaneously, up-regulation of SUC1 promoted sucrose uptake from the apoplast into the parenchyma cells and of SWEET2 sequestration of sucrose in the vacuole of the root cells. We propose that the fungus tries to escape from the Ca3(PO4)2 medium and colonizes the entire host. To prevent excessive sugar consumption by the propagating hyphae, the host restricts sugar availability in its apoplastic root space by downregulating sugar transporter genes for phloem unloading, and by upregulating transporter genes which maintain the sugar in the root cells.

5.
Front Plant Sci ; 11: 573670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424876

RESUMO

Plants host numerous endophytic microbes which promote plant performance, in particular under stress. A new endophytic fungus was isolated from the leaves of a deciduous wood tree Leucas aspera. Morphological inspection and multilocus phylogeny identified the fungus as a new Trichoderma strain. If applied to Arabidopsis thaliana and Nicotiana attenuata, it mainly colonizes their roots and strongly promotes initial growth of the plants on soil. The fungus grows on high NaCl or mannitol concentrations, and shows predatory capability on the pathogenic fungus Alternaria brassicicola. Colonized Arabidopsis plants tolerate higher salt stress and show lower A. brassicicola spread in roots and shoots, while arbuscular mycorrhiza formation in N. attenuata is not affected by the Trichoderma strain. These beneficial features of the novel Trichoderma strain are important prerequisites for agricultural applications.

6.
PLoS One ; 11(6): e0158099, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362422

RESUMO

Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spectrometry imaging (DESI MSI) and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and methoxylated analogues. Rh was predominantly distributed in the main roots, collar region of the stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex region. The identities of the metabolites were assigned based on both the fragmentation patterns and exact mass analyses. We discuss these results, with specific reference to the possible pathways of Rh biosynthesis and translocation during seedling development in D. binectariferum.


Assuntos
Cromonas/análise , Meliaceae/ultraestrutura , Piperidinas/análise , Plântula/ultraestrutura , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetilação , Glicosilação , Meliaceae/química , Redes e Vias Metabólicas , Casca de Planta/química , Casca de Planta/ultraestrutura , Caules de Planta/química , Caules de Planta/ultraestrutura , Plântula/química , Sementes/química , Sementes/ultraestrutura , Distribuição Tecidual
7.
PLoS One ; 9(2): e89437, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558500

RESUMO

Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Endogamia , Meliaceae/crescimento & desenvolvimento , Meliaceae/genética , Árvores/crescimento & desenvolvimento , Cruzamento/métodos , Agricultura Florestal/métodos , Índia , Repetições de Microssatélites/genética , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical
8.
PLoS One ; 9(12): e112769, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493426

RESUMO

BACKGROUND AND QUESTION: The harvesting of medicinal plants from wild sources is escalating in many parts of the world, compromising the long-term survival of natural populations of medicinally important plants and sustainability of sources of raw material to meet pharmaceutical industry needs. Although protected areas are considered to play a central role in conservation of plant genetic resources, the effectiveness of protected areas for maintaining medicinal plant populations subject to intense harvesting pressure remain largely unknown. We conducted genetic and demographic studies of Nothapodytes nimmoniana Graham, one of the extensively harvested medicinal plant species in the Western Ghats biodiversity hotspot, India to assess the effectiveness of protected areas in long-term maintenance of economically important plant species. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of adults and seedlings of N. nimmoniana in four protected and four non-protected areas using 7 nuclear microsatellite loci revealed that populations that are distributed within protected areas are subject to lower levels of harvesting and maintain higher genetic diversity (He = 0.816, Ho = 0.607, A = 18.857) than populations in adjoining non-protected areas (He = 0.781, Ho = 0.511, A = 15.571). Furthermore, seedlings in protected areas had significantly higher observed heterozygosity (Ho = 0.630) and private alleles as compared to seedlings in adjoining non-protected areas (Ho = 0.426). Most populations revealed signatures of recent genetic bottleneck. The prediction of long-term maintenance of genetic diversity using BOTTLESIM indicated that current population sizes of the species are not sufficient to maintain 90% of present genetic diversity for next 100 years. CONCLUSIONS/SIGNIFICANCE: Overall, these results highlight the need for establishing more protected areas encompassing a large number of adult plants in the Western Ghats to conserve genetic diversity of economically and medicinally important plant species.


Assuntos
Magnoliopsida/genética , Agricultura , Alelos , Teorema de Bayes , Biodiversidade , Evolução Biológica , Análise por Conglomerados , Simulação por Computador , Conservação dos Recursos Naturais , Carga Genética , Variação Genética , Heterozigoto , Índia , Repetições de Microssatélites , Modelos Genéticos , Plantas Medicinais/genética , Densidade Demográfica , Plântula/genética
9.
Ecol Evol ; 3(10): 3233-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24223264

RESUMO

The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA