Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 19(7): 916-934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30836926

RESUMO

BACKGROUND: The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype. The prevalence of drug-induced side effects leaves open a narrow window of speculation that the decreased therapeutic efficacy and observed side effects may be most likely due to non specific HDAC isoform inhibition. The aim of this paper is to synthesis and evaluates HDAC8 isoform specific inhibitors. METHODS: Based on the preliminary report on the design and in silico studies of 52 hydroxamic acid derivatives bearing multi-substituent heteroaromatic rings with chiral amine linker, five compounds were shortlisted and synthesized by microwave assisted approach and high yielding synthetic protocol. A series of in vitro assays in addition to HDAC8 inhibitory activity was used to evaluate the synthesised compounds. RESULTS: Inhibitors 1e, 2e, 3e, 4e and 5e exerted the anti-proliferative activities against CTCL cell lines at 20- 100 µM concentrations. Both the pyrimidine- and pyridine-based probes exhibited µM inhibitory activity against HDAC8. The pyrimidine-based probe 1e displayed remarkable HDAC8 selectivity superior to that of the standard drug, SAHA with an IC50 at 0.1µM. CONCLUSION: Our study demonstrated that simple modifications at different portions of pharmacophore in the hydroxamic acid analogues are effective for improving both HDAC8 inhibitory activity and isoform selectivity. Potent and highly isoform-selective HDAC8 inhibitors were identified. These findings would be expedient for further development of HDAC8-selective inhibitors.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Estrutura Molecular , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
2.
Life Sci ; 239: 117032, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704450

RESUMO

Colorectal cancer remains to be the most prevalent malignancy in humans and 1.5 million men and women living in the United States are diagnosed with colorectal cancer, with a predicted 145,600 new cases to be diagnosed in 2019. Curcuminoids and its synthetic analogs are now of interest due to their bioactive attributes, especially their action as anticancer activity in various cancer cell line models. Several in vivo and in vitro studies have substantially proved their anticancer activities against colon cancer cell lines. Curcumin analogues like IND-4, FLLL, GO-Y030 and C086 have demonstrated to produce greater cytotoxicity when experimentally studied and study results from many have been suggested to be the same. Combination of curcumin with therapeutic cancer agents like tolfenamic acid, 5-fluorouracil, resveratrol and dasatinib showed improved cytotoxicity and chemotherapeutic effect. The results propose that employment of curcumin with novel drug delivery systems like liposome, micelles and nanoparticle have been performed which could improve the therapeutic efficacy against colon cancer. The present review highlights the mechanism of action, synergistic effect and novel delivery methods to improve the therapeutic potential of curcumin.


Assuntos
Anticarcinógenos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Humanos
3.
RSC Adv ; 8(42): 23629-23647, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540291

RESUMO

Fluoroquinolones (FQs) belong to the class of quinolone drugs that are used to treat Urinary tract infections (UTIs) through inhibition of E. coli DNA gyrase. Resistance to FQs poses a serious problem in the treatment against resistant strains of E. coli which are associated with Ser83 to Leu and Asp87 to Asn mutations at the quinolone resistance determining region (QRDR) of the GyrA subunit of DNA gyrase. Mutant DNA GyrA (mtDNA GyrA) is deemed to be a significant target for the development of novel FQ drugs. Due to resistance to FQ drugs, discovery or development of novel FQs is crucial to inhibit the mtDNA GyrA. Hence, the present study attempts to design and develop novel FQs that are efficient against resistant E. coli strains. A three-dimensional structure of the mtDNA GyrA protein was developed by homology modeling, following which 204 novel FQ analogs were designed using target based SAR. The designed ligands were then screened using molecular docking studies, through which the pattern of interaction between the ligands and the target protein was studied. As expected, the results of the docking study revealed that the molecules FQ-147, FQ-151 and FQ-37 formed hydrogen bonding and Van der Waals interactions with Leu83 and Asn87 (mutated residues), respectively. Further, the wild-type (WT), mtDNA GyrA and docking complex were studied by molecular dynamics (MD) simulations. Subsequently, all the screened compounds were subjected to a structure and ligand based pharmacophore study followed by ADMET and toxicity (TOPKAT) prediction. Finally, eighteen hit FQ analogs which showed good results for the following properties, viz., best binding score, estimated activity (MIC value) and calculated drug-like properties, and least toxicity, were shortlisted and identified as potential leads to treat UTI caused by FQ resistant E. coli. Apart from development of novel drug candidates for inhibition of mtDNA GyrA, the present study also contributes towards a superior comprehension of the interaction pattern of ligands in the target protein. To a more extensive degree, the present work will be useful for the rational design of novel and potent drugs for UTIs.

4.
Chem Cent J ; 10: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141229

RESUMO

BACKGROUND: Drugs that inhibit cyclooxygenase-2 (COX-2) while sparing cyclooxygenase-1 (COX-1) represent a new attractive therapeutic development and offer new perspective for further use of COX-2 inhibitors. Intention of this work is to develop safer, selective COX-2 inhibitors that do not produce harmful effects. RESULTS: A series of 55 tyrosine derivatives were designed for evaluation as selective COX-2 inhibitors and investigated by in silico for their anti-inflammatory activities using C-Docker. The results of docking study showed that 35 molecules were found to selectively inhibit the enzyme COX-2. These molecules formed stable π hydrophobic and additional van der Waals interactions in the active site side pocket of COX-2. The molecules selected from docking studies were examined through ADMET descriptors and Osiris property explorer to find its safety profile as well. The tyrosine derivatives containing toxic fragments were eliminated. CONCLUSION: The results conclude that out of 55, 19 molecules possessed best binding energy (< -3.333 kcal/mol) and these molecules had more selective and safer COX-2 inhibitor profile compared to the standard celecoxib.Graphical abstract3-D structural interactions of COX-2 inhibiting tyrosine derivatives.

5.
Bioinformation ; 7(3): 134-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22125384

RESUMO

Histone deacetylases (HDACs) are enzymes, which catalyze the removal of acetyl moiety from acetyl-lysine within the histone proteins and promote gene repression and silencing resulting in several types of cancer. HDACs are important therapeutic targets for the treatment of cancer and related diseases. Hydroxamic acid inhibitors show promising results in clinical trials against carcinogenesis. 120 hydroxamic acid derivatives were designed as inhibitors based on hydrophobic pocket and the Zn (II) catalytic site of HDAC8 active site using Structure Based Drug Design (SBDD) approach. High Throughput Virtual screening (HTVs) was used to filter the effective inhibitors. Induced Fit Docking (IFD) studies were carried out for the screening of eight inhibitors using Glide software. Hydrogen bond, hydrophobic interactions and octahedral coordination geometry with Zn (II) were observed in the IFD complexes. Prime MM-GBSA calculation was carried out for the binding free energy, to observe the stability of docked complexes. The Lipinski's rule of five was analyzed for ADME/Tox drug likeliness using Qikprop simulation. These inhibitors have good inhibitory properties as they have favorable docking score, energy, emodel, hydrogen bond and hydrophobic interactions, binding free energy and ADME/Tox. However, one compound (Cmp22) successively satisfied all the studies among the eight compounds screened and seems to be a promising potent inhibitor against HDAC8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA