Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36512492

RESUMO

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Assuntos
Acinetobacter baumannii , Humanos , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Testes de Sensibilidade Microbiana , Meropeném , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1736-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249354

RESUMO

Acinetobacter baumannii is an opportunistic Gram-negative pathogen that is an important cause of healthcare-associated infections exhibiting high mortality rates. Clinical isolates of multidrug-resistant (MDR) and extremely drug-resistant (XDR) A. baumannii strains are increasingly being observed. Compounding this concern is the dearth of new antibacterial agents in late-stage development that are effective against MDR and XDR A. baumannii. As part of an effort to address these concerns, two genes (aroA and aroC) of the shikimate pathway have previously been determined to be essential for the growth and survival of A. baumannii during host infection (i.e. to be essential in vivo). This study expands upon these results by demonstrating that the A. baumannii aroK gene, encoding shikimate kinase (SK), is also essential in vivo in a rat soft-tissue infection model. The crystal structure of A. baumannii SK in complex with the substrate shikimate and a sulfate ion that mimics the binding interactions expected for the ß-phosphate of ATP was then determined to 1.91 Å resolution and the enzyme kinetics were characterized. The flexible shikimate-binding domain and LID region are compared with the analogous regions in other SK crystal structures. The impact of structural differences and sequence divergence between SKs from pathogenic bacteria that may influence antibiotic-development efforts is discussed.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/química , Acinetobacter baumannii/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Chiquímico/metabolismo , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/metabolismo , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Ratos , Transdução de Sinais
3.
Infect Immun ; 78(9): 3993-4000, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20643860

RESUMO

Acinetobacter baumannii is a pathogen of increasing medical importance with a propensity to be multidrug resistant, thereby making treatment challenging. Little is known of virulence traits in A. baumannii. To identify virulence factors and potential drug targets, random transposon (Tn) mutants derived from the A. baumannii strain AB307-0294 were screened to identify genes essential for growth in human ascites fluid in vitro, an inflammatory exudative fluid. These studies led to the identification of two genes that were predicted to be required for capsule polymerization and assembly. The first, ptk, encodes a putative protein tyrosine kinase (PTK), and the second, epsA, encodes a putative polysaccharide export outer membrane protein (EpsA). Monoclonal antibodies used in flow cytometric and Western analyses confirmed that these genes are required for a capsule-positive phenotype. A capsule-positive phenotype significantly optimized growth in human ascites fluid, survival in human serum, and survival in a rat soft tissue infection model. Importantly, the clearance of the capsule-minus mutants AB307.30 (ptk mutant, capsule minus) and AB307.45 (epsA mutant, capsule minus) was complete and durable. These data demonstrated that the K1 capsule from AB307-0294 was an important protectin. Further, these data suggested that conserved proteins, which contribute to the capsule-positive phenotype, are potential antivirulence drug targets. Therefore, the results from this study have important biologic and translational implications and, to the best of our knowledge, are the first to address the role of capsule in the pathogenesis of A. baumannii infection.


Assuntos
Acinetobacter baumannii/patogenicidade , Cápsulas Bacterianas/fisiologia , Fatores de Virulência/fisiologia , Animais , Antígenos de Bactérias , Atividade Bactericida do Sangue , Proteínas do Sistema Complemento/imunologia , Humanos , Polissacarídeos Bacterianos , Ratos
4.
Proteins ; 78(3): 603-13, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19774618

RESUMO

We have identified a highly conserved fingerprint of 40 residues in the TGYK subfamily of the short-chain oxidoreductase enzymes. The TGYK subfamily is defined by the presence of an N-terminal TGxxxGxG motif and a catalytic YxxxK motif. This subfamily contains more than 12,000 members, with individual members displaying unique substrate specificities. The 40 fingerprint residues are critical to catalysis, cofactor binding, protein folding, and oligomerization but are substrate independent. Their conservation provides critical insight into evolution of the folding and function of TGYK enzymes. Substrate specificity is determined by distinct combinations of residues in three flexible loops that make up the substrate-binding pocket. Here, we report the structure determinations of the TGYK enzyme A3DFK9 from Clostridium thermocellum in its apo form and with bound NAD(+) cofactor. The function of this protein is unknown, but our analysis of the substrate-binding loops putatively identifies A3DFK9 as a carbohydrate or polyalcohol metabolizing enzyme. C. thermocellum has potential commercial applications because of its ability to convert biomaterial into ethanol. A3DFK9 contains 31 of the 40 TGYK subfamily fingerprint residues. The most significant variations are the substitution of a cysteine (Cys84) for a highly conserved glycine within a characteristic VNNAG motif, and the substitution of a glycine (Gly106) for a highly conserved asparagine residue at a helical kink. Both of these variations occur at positions typically participating in the formation of a catalytically important proton transfer network. An alternate means of stabilizing this proton wire was observed in the A3DFK9 crystal structures.


Assuntos
Clostridium thermocellum/enzimologia , Oxirredutases/química , Oxirredutases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Cristalografia por Raios X , Modelos Moleculares , Mapeamento de Peptídeos/métodos , Ligação Proteica , Água/química
5.
J Virol ; 83(7): 3007-18, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19153232

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV) devotes a significant portion of its genome to producing nonstructural proteins required for viral replication. SARS-CoV nonstructural protein 9 (nsp9) was identified as an essential protein with RNA/DNA-binding activity, and yet its biological function within the replication complex remains unknown. Nsp9 forms a dimer through the interaction of parallel alpha-helices containing the protein-protein interaction motif GXXXG. In order to study the role of the nsp9 dimer in viral reproduction, residues G100 and G104 at the helix interface were targeted for mutation. Multi-angle light scattering measurements indicated that G100E, G104E, and G104V mutants are monomeric in solution, thereby disrupting the dimer. However, electrophoretic mobility assays revealed that the mutants bound RNA with similar affinity. Further experiments using fluorescence anisotropy showed a 10-fold reduction in RNA binding in the G100E and G104E mutants, whereas the G104V mutant had only a 4-fold reduction. The structure of G104E nsp9 was determined to 2.6-A resolution, revealing significant changes at the dimer interface. The nsp9 mutations were introduced into SARS-CoV using a reverse genetics approach, and the G100E and G104E mutations were found to be lethal to the virus. The G104V mutant produced highly debilitated virus and eventually reverted back to the wild-type protein sequence through a codon transversion. Together, these data indicate that dimerization of SARS-CoV nsp9 at the GXXXG motif is not critical for RNA binding but is necessary for viral replication.


Assuntos
Dimerização , Proteínas de Ligação a RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Substituição de Aminoácidos/genética , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Viral/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-17277451

RESUMO

The gene product of fabG from Aquifex aeolicus has been heterologously expressed in Escherichia coli. Purification of the protein took place using anion-exchange and size-exclusion chromatography and the protein was then crystallized. Diffraction data were collected to a maximum resolution of 1.8 A and the initial phases were determined by molecular replacement. The A. aeolicus FabG protein is a putative beta-ketoacyl-acyl carrier protein reductase. Structure-function studies of this protein are being performed as part of a larger project investigating naturally occurring deviations from highly conserved residues within the short-chain oxidoreductase (SCOR) family.


Assuntos
Oxirredutases do Álcool/química , Bactérias/enzimologia , Oxirredutases do Álcool/genética , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo
8.
J Steroid Biochem Mol Biol ; 101(1): 50-60, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16889958

RESUMO

Mammalian 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) is a member of the short chain dehydrogenase/reductase. It is a key steroidogenic enzyme that catalyzes the first step of the multienzyme pathway conversion of circulating dehydroepiandrosterone and pregnenolone to active steroid hormones. A three dimensional model of a ternary complex of human 3beta-HSD type 1 (3beta-HSD_1) with an NAD cofactor and androstenedione product has been developed based upon X-ray structures of the ternary complex of E. coli UDP-galactose 4-epimerase (UDPGE) with an NAD cofactor and substrate (PDB_AC: 1NAH) and the ternary complex of human type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD_1) with an NADP cofactor and androstenedione (PDB_AC: 1QYX). The dimeric structure of the enzyme was built from two monomer models of 3beta-HSD_1 by respective 3D superposition with A and B subunits of the dimeric structure of Streptococcus suis DTDP-D-glucose 4,6-dehydratase (PDB_AC: 1KEP). The 3D model structure of 3beta-HSD_1 has been successfully used for the rational design of mutagenic experiments to further elucidate the key substrate binding residues in the active site as well as the basis for dual function of the 3beta-HSD_1 enzyme. The structure based mutant enzymes, Asn100Ser, Asn100Ala, Glu126Leu, His232Ala, Ser322Ala and Asn323Leu, have been constructed and functionally characterized. The mutagenic experiments have confirmed the predicted roles of the His232 and Asn323 residues in recognition of the 17-keto group of the substrate and identified Asn100 and Glu126 residues as key residues that participate for the dehydrogenase and isomerization reactions, respectively.


Assuntos
Complexos Multienzimáticos/metabolismo , Progesterona Redutase/metabolismo , Proteômica , Esteroide Isomerases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Catálise , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Progesterona Redutase/química , Progesterona Redutase/genética , Homologia de Sequência de Aminoácidos , Esteroide Isomerases/química , Esteroide Isomerases/genética , Especificidade por Substrato
9.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904878

RESUMO

The use of amphotericin B (AmB) in conjunction with 5-fluorocytosine (5-FC) is known to be the optimal therapy for treating cryptococcosis, but the mechanism by which 5-FC synergizes with AmB is unknown. In this study, we generated a Cryptococcus neoformans ura1Δ mutant lacking dihydroorotate dehydrogenase (DHODH), which demonstrated temperature-sensitive growth due to a defect in cell integrity and sensitivity to cell wall-damaging agents. In addition, sensitivity to AmB was greatly increased. Inclusion of uracil or uridine in the medium did not suppress the cell wall or AmB phenotype, whereas complementation with the wild-type URA1 gene complemented the mutant phenotype. As a measure of membrane accessibility, we assayed the rate of association of the lipid-binding dye 3,3'-dihexyloxacarbocyanine iodide (DiOC6) and saw more rapid association in the ura1Δ mutant. We likewise saw an increased rate of DiOC6 association in other AmB-sensitive mutants, including a ura- spontaneous URA5 mutant made by 5-fluoroorotic acid (5-FOA) selection and a bck1Δ mutant defective in cell integrity signaling. Similar results were also obtained by using a specific plasma membrane-binding CellMask live stain, with cell integrity mutants that exhibited increased and faster association of the dye with the membrane. Chitin synthase mutants (chs5Δ and chs6Δ) that lack any reported cell wall defects, in turn, demonstrate neither any increased susceptibility to AmB nor a greater accessibility to either of the dyes. Finally, perturbation of the cell wall of the wild type by treatment with the ß-1,6-glucan synthase inhibitor caspofungin was synergistic with AmB in vitro. IMPORTANCE Synergy between AmB and nucleotide biosynthetic pathways has been documented, but the mechanism of this interaction has not been delineated. Results from this study suggest a correlation between uridine nucleotide biosynthesis and cell integrity likely mediated through the pool of nucleotide-sugar conjugates, which are precursor molecules for both capsule and cell wall of C. neoformans. Thus, we propose a mechanism by which structural defects in the cell wall resulting from perturbation of pyrimidine biosynthesis allow faster and increased penetration of AmB molecules into the cell membrane. Overall, our work demonstrates that impairment of pyrimidine biosynthesis in C. neoformans could be a potential target for antifungal therapy, either alone or in combination with AmB.

10.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303741

RESUMO

Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health care costs. In fact, some strains of bacteria are resistant to all available antibiotics, such as Acinetobacter baumannii, which is the focus of this report. Therefore, the development of new antibiotics active against these resistant strains is urgently needed. In this study, BfmR is further validated as an intriguing target for a novel class of antibiotics. Successful inactivation of BfmR would confer the multiple benefits of a decreased ability of A. baumannii to survive in human body fluids, increased sensitivity to complement-mediated bactericidal activity and, importantly, increased sensitivity to other antibiotics. Structural studies support the potential for this "druggable" target, as they identify the potential for small-molecule binding at functionally relevant sites. Next-phase high-throughput screening studies utilizing BfmR are warranted.

11.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 3): 179-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26919521

RESUMO

The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/química , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/química
12.
Virus Res ; 172(1-2): 75-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246644

RESUMO

Influenza A virus is an important human pathogen accounting for widespread morbidity and mortality, with new strains emerging from animal reservoirs possessing the potential to cause pandemics. The influenza A RNA-dependent RNA polymerase complex consists of three subunits (PA, PB1, and PB2) and catalyzes viral RNA replication and transcription activities in the nuclei of infected host cells. The PB2 subunit has been implicated in pathogenicity and host adaptation. This includes the inhibition of type I interferon induction through interaction with the host's mitochondrial antiviral signaling protein (MAVS), an adaptor molecule of RIG-I-like helicases. This study reports the identification of the cognate PB2 and MAVS interaction domains necessary for complex formation. Specifically, MAVS residues 1-150, containing both the CARD domain and the N-terminal portion of the proline rich-region, and PB2 residues 1-37 are essential for PB2-MAVS virus-host protein-protein complex formation. The three α-helices constituting PB2 (1-37) were tested to determine their relative influence in complex formation, and Helix3 was observed to promote the primary interaction with MAVS. The PB2 MAVS-binding domain unexpectedly coincided with its PB1-binding domain, indicating an important dual functionality for this region of PB2. Analysis of these interaction domains suggests both virus and host properties that may contribute to host tropism. Additionally, the results of this study suggest a new strategy to develop influenza A therapeutics by simultaneously blocking PB2-MAVS and PB2-PB1 protein-protein interactions and their resulting activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
13.
mBio ; 3(4)2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911967

RESUMO

UNLABELLED: A critical feature of a potential antimicrobial target is the characteristic of being essential for growth and survival during host infection. For bacteria, genome-wide essentiality screens are usually performed on rich laboratory media. This study addressed whether genes detected in that manner were optimal for the identification of antimicrobial targets since the in vivo milieu is fundamentally different. Mutant derivatives of a clinical isolate of Acinetobacter baumannii were screened for growth on human ascites, an ex vivo medium that reflects the infection environment. A subset of 34 mutants with unique gene disruptions that demonstrated little to no growth on ascites underwent evaluation in a rat subcutaneous abscess model, establishing 18 (53%) of these genes as in vivo essential. The putative gene products all had annotated biological functions, represented unrecognized or underexploited antimicrobial targets, and could be grouped into five functional categories: metabolic, two-component signaling systems, DNA/RNA synthesis and regulation, protein transport, and structural. These A. baumannii in vivo essential genes overlapped poorly with the sets of essential genes from other Gram-negative bacteria catalogued in the Database of Essential Genes (DEG), including those of Acinetobacter baylyi, a closely related species. However, this finding was not due to the absence of orthologs. None of the 18 in vivo essential genes identified in this study, or their putative gene products, were targets of FDA-approved drugs or drugs in the developmental pipeline, indicating that a significant portion of the available target space within pathogenic Gram-negative bacteria is currently neglected. IMPORTANCE: The human pathogen Acinetobacter baumannii is of increasing clinical importance, and a growing proportion of isolates are multiantimicrobial-resistant, pan-antimicrobial-resistant, or extremely resistant strains. This scenario is reflective of the general problem of a critical lack of antimicrobials effective against antimicrobial-resistant Gram-negative bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli. This study identified a set of A. baumannii genes that are essential for growth and survival during infection and demonstrated the importance of using clinically relevant media and in vivo validation while screening for essential genes for the purpose of developing new antimicrobials. Furthermore, it established that if a gene is absent from the Database of Essential Genes, it should not be excluded as a potential antimicrobial target. Lastly, a new set of high-value potential antimicrobial targets for pathogenic Gram-negative bacteria has been identified.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/genética , Ascite/microbiologia , Meios de Cultura/química , Genes Bacterianos , Genes Essenciais , Abscesso/microbiologia , Animais , Modelos Animais de Doenças , Deleção de Genes , Humanos , Mutagênese Insercional , Ratos , Dermatopatias/microbiologia
14.
Protein Sci ; 19(5): 1097-103, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20340135

RESUMO

The characteristic oxidation or reduction reaction mechanisms of short-chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp-Ser-Tyr-Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118-Ser146-Thr159-Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH-complexed Q9HYA2 were determined at 2.3 A resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2-NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.


Assuntos
Proteínas de Bactérias/química , Oxirredutases/química , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Bases de Dados de Proteínas , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , NADP/química , NADP/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/genética , Alinhamento de Sequência
16.
Int J Bioinform Res Appl ; 5(3): 280-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19525201

RESUMO

beta-ketoacyl (acyl carrier protein) reductase (beta-k-ACPR) enzymes are essential to fatty acid synthesis in bacteria. The analyses revealed the most primitive member of the beta-k-ACPRs family was a NADP reductase where NADP was recognised by a Thr residue in the beta2alpha3 turn. Aromatic residue stacking at the dimer interface and a previously undetected conserved sequence at the C-terminus, stabilise the oligomeric assembly of these proteins. Our analysis indicates that the primordial members of the beta-k-ACPR family probably arose in the alpha-proteobacteria and are characterised by the presence of multiple open reading frames and an extreme codon and amino acid bias.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Evolução Molecular , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase , Sítios de Ligação , Variação Genética , Modelos Moleculares , Fases de Leitura Aberta , Conformação Proteica , Dobramento de Proteína
17.
J Infect Dis ; 199(4): 513-21, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19143563

RESUMO

BACKGROUND: Acinetobacter baumannii is a bacterial pathogen of increasing medical importance. Little is known about genes important for its survival in vivo. METHODS AND RESULTS: Screening of random transposon mutants of the model pathogen AB307-0294 identified the mutant AB307.27. AB307.27 contained its transposon insertion in pbpG, which encodes the putative low-molecular-mass penicillin-binding protein 7/8 (PBP-7/8). AB307.27 was significantly killed in ascites (P<.001), but its growth in Luria-Bertani broth was similar to that of its parent, AB307-0294 (P=.13). The survival of AB307.27 was significantly decreased in a rat soft-tissue infection model (P<.001) and a rat pneumonia model (P=.002), compared with AB307-0294. AB307.27 was significantly killed in 90% human serum in vitro, compared with AB307-0294 (P<.001). Electron microscopy demonstrated more coccobacillary forms of AB307.27, compared with AB307-0294, suggesting a possible modulation in the peptidoglycan, which may affect susceptibility to host defense factors. CONCLUSIONS: These findings demonstrate that PBP-7/8 contributes to the pathogenesis of A. baumannii. PBP-7/8 either directly or indirectly contributes to the resistance of AB307-0294 to complement-mediated bactericidal activity. An understanding of how PBP-7/8 contributes to serum resistance will lend insight into the role of this low-molecular-mass PBP whose function is poorly understood.


Assuntos
Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Proteínas de Ligação às Penicilinas/fisiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Sequência de Aminoácidos , Animais , Atividade Bactericida do Sangue , Proteínas do Sistema Complemento/imunologia , Simulação por Computador , Elementos de DNA Transponíveis , Interpretação Estatística de Dados , Modelos Animais de Doenças , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Ratos , Infecções dos Tecidos Moles/imunologia , Infecções dos Tecidos Moles/microbiologia , Urina/microbiologia
18.
Protein Expr Purif ; 52(2): 249-57, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17187987

RESUMO

The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Cromatografia em Gel , Dicroísmo Circular , Expressão Gênica , Peso Molecular , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas não Estruturais Virais
19.
J Biol Chem ; 280(22): 21321-8, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15797861

RESUMO

The human type 1 (placenta, breast tumors, and prostate tumors) and type 2 (adrenals and gonads) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1 and 3beta-HSD2) are encoded by two distinct genes that are expressed in a tissue-specific pattern. Our recent studies have shown that His156 contributes to the 14-fold higher affinity that 3beta-HSD1 exhibits for substrate and inhibitor steroids compared with human 3beta-HSD2 containing Tyr156 in the otherwise identical catalytic domain. Our structural model of human 3beta-HSD localizes His156 or Tyr156 in the subunit interface of the enzyme homodimer. The model predicts that Gln105 on one enzyme subunit has a higher probability of interacting with His156 on the other subunit in 3beta-HSD1 than with Tyr156 in 3beta-HSD2. The Q105M mutant of 3beta-HSD1 (Q105M1) shifts the Michaelis-Menten constant (Km) for 3beta-HSD substrate and inhibition constants (Ki) for epostane and trilostane to the much lower affinity profiles measured for wild-type 3beta-HSD2 and H156Y1. However, the Q105M2 mutant retains substrate and inhibitor kinetic profiles similar to those of 3beta-HSD2. Our model also predicts that Gln240 in 3beta-HSD1 and Arg240 in 3beta-HSD2 may be responsible for the 3-fold higher affinity of the type 1 isomerase activity for substrate steroid and cofactors. The Q240R1 mutation increases the isomerase substrate Km by 2.2-fold to a value similar to that of 3beta-HSD2 isomerase and abolishes the allosteric activation of isomerase by NADH. The R240Q2 mutation converts the isomerase substrate, cofactor, and inhibitor kinetic profiles to the 4-14-fold higher affinity profiles of 3beta-HSD1. Thus, key structural reasons for the substantially higher affinities of 3beta-HSD1 for substrates, coenzymes, and inhibitors have been identified. These structure and function relationships can be used in future docking studies to design better inhibitors of the 3beta-HSD1 that may be useful in the treatment of hormone-sensitive cancers and preterm labor.


Assuntos
3-Hidroxiesteroide Desidrogenases/química , Di-Hidrotestosterona/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Androstenóis/química , Animais , Arginina/química , Baculoviridae/metabolismo , Western Blotting , Catálise , Domínio Catalítico , Linhagem Celular , Primers do DNA/química , Di-Hidrotestosterona/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Glutamina/química , Histidina/química , Humanos , Insetos , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , NAD/química , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Distribuição Tecidual
20.
J Biol Chem ; 279(27): 28697-705, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15100216

RESUMO

Deoxyhypusine synthase catalyzes the first step in the two-step post-translational synthesis of hypusine, which is uniquely present in eukaryotic initiation factor 5A (eIF5A). Deoxyhypusine synthase and eIF5A are conserved throughout the eukaryotic kingdom, and both are essential for cell proliferation and survival. A previous study (Liao, D. I., Wolff, E. C., Park, M. H., and Davies, D. R. (1998) Structure 6, 23-32) of human deoxyhypusine synthase revealed four active sites of the homotetrameric enzyme located within deep tunnels. These Form I crystals were obtained under conditions of acidic pH and high ionic strength and likely contain an inactive enzyme. Each active-site entrance is blocked by a ball-and-chain motif composed of a region of extended structure capped by a two-turn alpha-helix. We report here at 2.2 A a new Form II crystal of the deoxyhypusine synthase:NAD holoenzyme grown at low ionic strength and pH 8.0, near the optimal pH for enzymatic activity. The ball-and-chain motif could not be detected in the electron density, suggesting that it swings freely and thus it no longer obstructs the active-site entrance. The deoxyhypusine synthase competitive inhibitor N(1)-guanyl-1,7-diaminoheptane (GC(7))is observed bound within the putative active site of the enzyme in the new crystal form (Form II) after exposure to the inhibitor. This first structure of a deoxyhypusine synthase.NAD.inhibitor ternary complex under physiological conditions now provides a structural context to discuss the results of previous biochemical investigations of the deoxyhypusine synthase reaction mechanism. This structure also provides a basis for the development of improved inhibitors and antiproliferative agents.


Assuntos
Guanina/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Fatores de Iniciação de Peptídeos/química , Proteínas de Ligação a RNA/química , Alquil e Aril Transferases/química , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Dimerização , Elétrons , Guanina/química , Humanos , Concentração de Íons de Hidrogênio , Íons , Modelos Moleculares , NAD/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Espermidina/química , Difração de Raios X , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA