Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 15(5): 605-613, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27808470

RESUMO

Food supplementation with the conditionally essential amino acid arginine (Arg) has been shown to have nutritional benefits. Degradation of cyanophycin (CGP), a peptide polymer used for nitrogen storage by cyanobacteria, requires cyanophycinase (CGPase) and results in the release of ß-aspartic acid (Asp)-Arg dipeptides. The simultaneous production of CGP and CGPase in plants could be a convenient source of Arg dipeptides. Different variants of the cphB coding region from Thermosynechococcus elongatus BP-1 were transiently expressed in Nicotiana benthamiana plants. Translation and enzyme stability were optimized to produce high amounts of active CGPase. Protein stability was increased by the translational fusion of CGPase to the green fluorescent protein (GFP) or to the transit peptide of the small subunit of RuBisCO for peptide production in the chloroplasts. Studies in mice showed that plant-expressed CGP fed in combination with plant-made CGPase was hydrolysed in the intestine, and high levels of ß-Asp-Arg dipeptides were found in plasma, demonstrating dipeptide absorption. However, the lack of an increase in Asp and Arg or its metabolite ornithine in plasma suggests that Arg from CGP was not bioavailable in this mouse group. Intestinal degradation of CGP by CGPase led to low intestinal CGP content 4 h after consumption, but after ingestion of CGP alone, high CGP concentrations remained in the large intestine; this indicated that intact CGP was transported from the small to the large intestine and that CGP was resistant to colonic microbes.


Assuntos
Proteínas de Bactérias/metabolismo , Mucosa Intestinal/metabolismo , Nicotiana/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Animais , Arginina/farmacocinética , Disponibilidade Biológica , Cloroplastos/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Suplementos Nutricionais , Dipeptídeos/farmacocinética , Hidrólise , Masculino , Camundongos , Extratos Vegetais/química , Plantas Geneticamente Modificadas , Nicotiana/genética
2.
Adv Sci (Weinh) ; 11(13): e2307229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258386

RESUMO

Low-density polyethylene (LDPE) is one of the most important plastics, which is produced unfortunately under extreme conditions. In addition, it consists of robust aliphatic C─C bonds which are challenging to cleave for plastic recycling. A low-pressure and -temperature (pethylene = 2 bara, T = 70 °C) macromonomer-based synthesis of long chain branched polyethylene is reported. The introduction of recycle points permits the polymerization (grafting to) of the macromonomers to form the long chain branched polyethylene and its depolymerization (branch cleavage). Coordinative chain transfer polymerization employing ethylene and co-monomers is used for the synthesis of the macromonomers, permitting a high flexibility of their precise structure and efficient synthesis. The long chain branched polyethylene material matches key properties of low-density polyethylene.

3.
Biotechnol Rep (Amst) ; 11: 90-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28352545

RESUMO

Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

4.
Plant Physiol Biochem ; 49(4): 377-87, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21367611

RESUMO

Polygalacturonases (PGs) of wild-type and non-virulent phenotype conversion mutant (PC) strains of Ralstonia solanacearum were compared by investigating their activities and their inhibition by polygalacturonase-inhibiting proteins (PGIPs) from tomato stems. In cultures of wild-type strain ToUdk2, slimy (s), retarded slimy (rs) and non-slimy (ns) colonies appeared. The conversion of the 's' into the 'rs' colony form coincided with the beginning of PG production. PG activity of the PC strain increased about 5 h earlier (at 6 hpi), and was up to 35 times higher in media supplemented with two different tomato stem extracts or polygalacturonic acid, compared to the wild-type at 6 hpi, and generally 4-8 times higher across test media and time. By hydrophobic interaction chromatography (HIC), fluorophor-assisted carbohydrate-polyacrylamid-gel electrophoresis (FACE-PAGE) and mass spectrometry analyses, endo-PG PehA, exo-PGs PehB and PehC were identified. PGs of the PC mutant consisted mainly of endo-PG. The increased PG production after supplementing the medium with tomato cell wall extract was reflected by a higher activity of exo-PGs for both strains. Total PGs (endo-PG and exo-PGs) activities were inhibited by PGIPs of tomato stem extracts. PGIP activity was concentration dependent, constitutively present, and not related to resistance nor susceptibility of tomato recombinant inbred lines to R. solanacearum. The proteinaceous character of the inhibiting component was inferred from ammonium sulphate precipitation. For the first time a plant PGIP activity against a bacterial pathogen is reported. Observations support that endo- and exo-PG synthesis is governed by a sensitive regulatory network, which, in interaction with PGIP and cell wall degradation products, leads to generation or avoidance of elicitor-active oligomers, and, thus, may contribute to the development of the compatible or incompatible interaction.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Poligalacturonase/antagonistas & inibidores , Ralstonia solanacearum/enzimologia , Solanum lycopersicum/metabolismo , Proteínas de Bactérias/genética , Parede Celular/química , Mutação , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/farmacologia , Caules de Planta/química , Poligalacturonase/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA