Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(3): 621-630, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32654659

RESUMO

Introduction: Neuropeptide Y (NPY) signaling in the brain plays an important role in energy regulation, and is altered during diet-induced obesity. Yet, NPY function during the consumption of specific diet components remains to be fully determined. We have previously demonstrated that consumption of a saturated fat component (free-choice high-fat; fcHF), a sucrose solution (high-sugar; fcHS), or both (fcHFHS) combined with a standard diet (chow and water) has diverse effects on Npy expression in the arcuate nucleus and the sensitivity to intraventricular NPY administration. Arcuate NPY neurons project to the lateral hypothalamus (LHA), and NPY administration in the LHA potently promotes chow intake in rats on a standard diet. However, it is currently unclear if short-term consumption of a palatable free-choice diet alters NPY function in the LHA. Therefore, we assessed the effects of intra-LHA NPY administration on intake in rats following one-week consumption of a fcHF, fcHS, or fcHFHS diet.Methods: Male Wistar rats consumed a fcHF, fcHS, fcHFHS, or control (CHOW) diet for one week before NPY (0.3 µg / 0.3 µL) or phosphate-buffered saline (0.3 µL) was administered into the LHA. Intake was measured 2h later. fcHFHS-fed rats were divided into high-fat (fcHFHS-hf) and low-fat (fcHFHS-lf) groups based on differences in basal fat intake.Results: Intra-LHA NPY administration increased chow intake in fcHFHS- (irrespective of basal fat intake), fcHF- and CHOW-fed rats. Intra-LHA NPY infusion increased fat intake in fcHF-, fcHFHS-hf, but not fcHFHS-lf, rats. Intra-LHA NPY infusion did not increase caloric intake in fcHS-fed rats.Discussion: Our data demonstrate that the effects of intra-LHA NPY on caloric intake differ depending on the consumption of a fat or sugar component, or both, in a free-choice diet. Our data also indicate that baseline preference for the fat diet component modulates the effects of intra-LHA NPY in fcHFHS-fed rats.


Assuntos
Região Hipotalâmica Lateral , Neuropeptídeo Y , Animais , Dieta Hiperlipídica , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Ratos , Ratos Wistar , Sacarose
2.
Eur J Neurosci ; 54(4): 5261-5271, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184338

RESUMO

Fibroblast growth factor 23 (FGF23) is an endocrine growth factor and known to play a pivotal role in phosphate homeostasis. Interestingly, several studies point towards a function of FGF23 in the hypothalamus. FGF23 classically activates the FGF receptor 1 in the presence of the co-receptor αKlotho, of both gene expression in the brain was previously established. However, studies on gene and protein expression of FGF23 in the brain are scarce and have been inconsistent. Therefore, our aim was to localise FGF23 gene and protein expression in the rat brain with focus on the hypothalamus. Also, we investigated the protein expression of αKlotho. Adult rat brains were used to localise and visualise FGF23 and αKlotho protein in the hypothalamus by immunofluorescence labelling. Furthermore, western blots were used for assessing hypothalamic FGF23 protein expression. FGF23 gene expression was investigated by qPCR in punches of the arcuate nucleus, lateral hypothalamus, paraventricular nucleus, choroid plexus, ventrolateral thalamic nucleus and the ventromedial hypothalamus. Immunoreactivity for FGF23 and αKlotho protein was found in the hypothalamus, third ventricle lining and the choroid plexus. Western blot analysis of the hypothalamus confirmed the presence of FGF23. Gene expression of FGF23 was not detected, suggesting that the observed FGF23 protein is not brain-derived. Several FGF receptors are known to be present in the brain. Therefore, we conclude that the machinery for FGF23 signal transduction is present in several brain areas, indeed suggesting a role for FGF23 in the brain.


Assuntos
Fatores de Crescimento de Fibroblastos , Glucuronidase , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Hipotálamo/metabolismo , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
3.
FASEB J ; 31(10): 4545-4554, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28679529

RESUMO

Recent studies have shown that meal timing throughout the day contributes to maintaining or regaining weight after hypocaloric diets. Although brain serotonin and dopamine are well known to be involved in regulating feeding, it is unknown whether meal timing during energy restriction affects these neurotransmitter systems. We studied the effect of a 4 wk hypocaloric diet with either 50% of daily calories consumed at breakfast (BF group) or at dinner (D group) on hypothalamic and thalamic serotonin transporter (SERT) binding and on striatal dopamine transporter (DAT) binding. The BF and D groups lost a similar amount of weight. Striatal DAT and thalamic SERT binding increased in the BF group, while decreasing in the D group after the diet (ΔDAT 0.37 ± 0.63 vs. -0.53 ± 0.77, respectively; P = 0.005; ΔSERT 0.12 ± 0.25 vs. -0.13 ± 0.26 respectively, P = 0.032). Additional voxel-based analysis showed an increase in DAT binding in the ventral striatum in the BF group and a decrease in the dorsal striatum in the D group. During weight loss, striatal DAT and thalamic SERT binding increased weight independently when 50% of daily calories were consumed at breakfast, whereas it decreased when caloric intake was highest at dinner. These findings may contribute to the earlier reported favorable effect of meal timing on weight maintenance after hypocaloric diets.-Versteeg, R. I., Schrantee, A., Adriaanse, S. M., Unmehopa, U. A., Booij, J., Reneman, L., Fliers, E., la Fleur, S. E., Serlie, M. J. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ingestão de Energia/fisiologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Redução de Peso/fisiologia , Idoso , Idoso de 80 Anos ou mais , Peso Corporal/fisiologia , Corpo Estriado/metabolismo , Dieta Redutora , Dopamina/metabolismo , Comportamento Alimentar/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Serotonina/metabolismo , Fatores de Tempo
4.
Appetite ; 120: 527-535, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988760

RESUMO

Consumption of fat and sugar induces hyperphagia and increases the prevalence of obesity and diabetes type 2. Low-grade inflammation in the hypothalamus, a key brain area involved in the regulation of energy homeostasis is shown to blunt signals of satiety after long term high fat diet. The fact that this mechanism can be activated after a few days of hyperphagia before apparent obesity is present led to our hypothesis that hypothalamic inflammation is induced with fat and sugar consumption. Here, we used a free-choice high-fat high-sugar (fcHFHS) diet-induced obesity model and tested the effects of differential overnight nutrient intake during the final experimental night on markers of hypothalamic inflammation. Male Wistar rats were fed a control diet or fcHFHS diet for one week, and assigned to three different feeding conditions during the final experimental night: 1) fcHFHS-fed, 2) fed a controlled amount of chow diet, or 3) fasted. RT-qPCR and Western blot were utilized to measure hypothalamic gene and protein expression, of cytokines and intermediates of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Lastly, we investigated the effects of acute fat intake on markers of hypothalamic inflammation in fat-naïve rats. fcHFHS-fed rats consumed more calories, increased adipose tissue, and showed elevated expression of hypothalamic inflammation markers (increased phosphorylation of NF-κB protein, Nfkbia and Il6 gene expression) compared to chow-fed rats. These effects were evident in rats consuming relative high amounts of fat. Removal of the fat and sugar, or fasting, during the final experimental night ameliorated hypothalamic inflammation. Finally, a positive correlation was observed between overnight acute fat consumption and hypothalamic NF-κB phosphorylation in fat-naïve rats. Our data indicate that one week of fcHFHS diet, and especially the fat component, promotes hypothalamic inflammation, and removal of the fat and sugar component reverses these detrimental effects.


Assuntos
Ingestão de Alimentos , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Adiposidade , Animais , Citocinas/sangue , Citocinas/genética , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Açúcares da Dieta/administração & dosagem , Modelos Animais de Doenças , Privação de Alimentos , Hiperfagia/dietoterapia , Hiperfagia/etiologia , Leptina/sangue , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos Wistar
5.
Neuroendocrinology ; 105(2): 141-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27626923

RESUMO

BACKGROUND: Altered brain dopaminergic and serotonergic pathways have been shown in obese rodents and humans, but it is unknown whether this is related to obesity per se or to the metabolic derangements associated with obesity. METHODS: We performed a case-control study in insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) subjects (n = 12) and age-matched lean controls (n = 8) and measured serotonin transporter (SERT) binding in the whole diencephalon and specifically in the hypothalamus, as well as dopamine transporter (DAT) binding in the striatum using 123I- FP-CIT single-photon emission computed tomography. We assessed insulin sensitivity using the homeostatic model assessment of insulin resistance. RESULTS: BMI did not differ between the IRO and ISO subjects. SERT binding in the diencephalon was significantly lower in IRO than in ISO subjects, but was not different between lean and obese subjects. SERT binding in the hypothalamus tended to be reduced in obese versus lean subjects, but was not different between IRO and ISO subjects. Striatal DAT binding was similar between lean and obese subjects as well as between ISO and IRO subjects. CONCLUSIONS: We conclude that SERT binding in the diencephalon is reduced in insulin-resistant subjects independently of body weight, while hypothalamic SERT binding tends to be lower in obesity, with no difference between insulin-resistant and insulin-sensitive subjects. This suggests that the metabolic perturbations associated with obesity independently affect SERT binding within the diencephalon.


Assuntos
Diencéfalo/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Índice de Massa Corporal , Mapeamento Encefálico , Estudos de Casos e Controles , Diencéfalo/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Obesidade/diagnóstico por imagem , Ligação Proteica , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos
6.
Brain ; 139(Pt 3): 908-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792551

RESUMO

The cholinergic nucleus basalis of Meynert, which is important for memory functions, shows neuronal activation ('up-phase') during the early stages of Alzheimer's disease and neurodegeneration ('down-phase') in later stages of Alzheimer's disease. MicroRNA-132 (miR-132) and the transcription factor early growth response-1 (EGR1) were proposed as possible candidate molecules regulating such an up-down activity pattern of the nucleus basalis of Meynert during the course of Alzheimer's disease, as they both show this up-down pattern of expression in the prefrontal cortex during the course of Alzheimer's disease. Not only do these two molecules stimulate synaptic activity and plasticity, they are also involved in Alzheimer's disease pathology and might, in addition, affect cholinergic function. In the nucleus basalis of Meynert, we investigated the expression of miR-132 and EGR1 along the entire course of Alzheimer's disease. Forty-nine post-mortem nucleus basalis of Meynert samples were studied, ranging from non-demented controls (Braak stage = 0) to late Alzheimer's disease patients (Braak stage = VI), and from clinical Reisberg scale 1 to 7. Each Braak stage contained seven samples, that were all well matched for confounding factors, i.e. age (range 58-91), sex, post-mortem delay, cerebrospinal fluid pH (as a measure for agonal state), APOE genotype, clock time of death, tissue fixation time, and tissue storage time. The alterations of these two molecules were studied over the course of Alzheimer's disease in relation to the expression of 4G8-stained amyloid-ß, hyperphosphorylated tau stained by antibody AT8, neuronal fibrillary tangles and neuropil threads stained by silver, and in relation to alterations in choline acetyltransferase. We found that the expression of miR-132 and EGR1 in the nucleus basalis of Meynert was quite stable during the early stages of Alzheimer's disease and decreased significantly only during late Alzheimer's disease stages. In addition, miR-132 and EGR1 showed a significant positive correlation with choline acetyltransferase expression (r = 0.49, P < 0.001 and r = 0.61, P < 0.001), while choline acetyltransferase expression showed a significantly negative correlation with hyperphosphorylated tau (r = -0.33, P = 0.021) but no correlation with 4G8-stained amyloid-ß. From the functional changes of miR-132 and EGR1 along the course of Alzheimer's disease we conclude: (i) that these two molecules may play a role in keeping the cholinergic function intact in early Alzheimer's disease stages; and (ii) that these molecules may contribute to the late neurodegeneration of this cholinergic nucleus.


Assuntos
Doença de Alzheimer/metabolismo , Núcleo Basal de Meynert/metabolismo , Progressão da Doença , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , MicroRNAs/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Núcleo Basal de Meynert/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Método Simples-Cego
7.
PLoS Genet ; 9(9): e1003752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039599

RESUMO

Genomic imprinting is a process that causes genes to be expressed from one allele only according to parental origin, the other allele being silent. Diseases can arise when the normally active alleles are not expressed. In this context, low level of expression of the normally silent alleles has been considered as genetic noise although such expression has never been further studied. Prader-Willi Syndrome (PWS) is a neurodevelopmental disease involving imprinted genes, including NDN, which are only expressed from the paternally inherited allele, with the maternally inherited allele silent. We present the first in-depth study of the low expression of a normally silent imprinted allele, in pathological context. Using a variety of qualitative and quantitative approaches and comparing wild-type, heterozygous and homozygous mice deleted for Ndn, we show that, in absence of the paternal Ndn allele, the maternal Ndn allele is expressed at an extremely low level with a high degree of non-genetic heterogeneity. The level of this expression is sex-dependent and shows transgenerational epigenetic inheritance. In about 50% of mutant mice, this expression reduces birth lethality and severity of the breathing deficiency, correlated with a reduction in the loss of serotonergic neurons. In wild-type brains, the maternal Ndn allele is never expressed. However, using several mouse models, we reveal a competition between non-imprinted Ndn promoters which results in monoallelic (paternal or maternal) Ndn expression, suggesting that Ndn allelic exclusion occurs in the absence of imprinting regulation. Importantly, specific expression of the maternal NDN allele is also detected in post-mortem brain samples of PWS individuals. Our data reveal an unexpected epigenetic flexibility of PWS imprinted genes that could be exploited to reactivate the functional but dormant maternal alleles in PWS. Overall our results reveal high non-genetic heterogeneity between genetically identical individuals that might underlie the variability of the phenotype.


Assuntos
Epigênese Genética/genética , Impressão Genômica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Síndrome de Prader-Willi/genética , Alelos , Animais , Apneia/genética , Apneia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/patologia , Regiões Promotoras Genéticas
8.
Metabolism ; 150: 155696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804881

RESUMO

BACKGROUND: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS: Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS: VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS: We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Região Hipotalâmica Lateral , Ratos , Masculino , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Roedores/metabolismo , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Ratos Long-Evans , Glucose/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo
9.
Nat Protoc ; 19(3): 700-726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092944

RESUMO

Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.


Assuntos
Neoplasias , Humanos , Fluxo de Trabalho , Sequenciamento Completo do Genoma/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Genômica , Biomarcadores
10.
Physiol Behav ; 268: 114239, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196819

RESUMO

Physical exercise training has been positioned as a behavioral strategy to prevent or alleviate obesity via promotion of energy expenditure as well as modulation of energy intake resulting from changes in dietary preference. Brain adaptations underlying the latter process are incompletely understood. Voluntary wheel running (VWR) is a self-reinforcing rodent paradigm that mimics aspects of human physical exercise training. Behavioral and mechanistic insight from such fundamental studies can help optimize therapies that improve body weight and metabolic health based on physical exercise training in humans. To assess the effects of VWR on dietary self-selection, male Wistar rats were given access to a two-component "no-choice" control diet (CD; consisting of prefabricated nutritionally complete pellets and a bottle with tap water) or a four-component free-choice high-fat high-sucrose diet (fc-HFHSD; consisting of a container with prefabricated nutritionally complete pellets, a dish with beef tallow, a bottle with tap water, and a bottle with 30% sucrose solution). Metabolic parameters and baseline dietary self-selection behavior during sedentary (SED) housing were measured for 21 days, after which half of the animals were allowed to run on a vertical running wheel (VWR) for another 30 days. This resulted in four experimental groups (SEDCD, SEDfc-HFHSD, VWRCD, and VWRfc-HFHSD). Gene expression of opioid and dopamine neurotransmission components, which are associated with dietary self-selection, was assessed in the lateral hypothalamus (LH) and nucleus accumbens (NAc), two brain regions involved in reward-related behavior, following 51 and 30 days of diet consumption and VWR, respectively. Compared to CD controls, consumption of fc-HFHSD before and during VWR did not alter total running distances. VWR and fc-HFHSD had opposite effects on body weight gain and terminal fat mass. VWR transiently lowered caloric intake and increased and decreased terminal adrenal and thymus mass, respectively, independent of diet. VWR during fc-HFHSD consumption consistently increased CD self-selection, had an acute negative effect on fat self-selection, and a delayed negative effect on sucrose solution self-selection compared to SED controls. Gene expression of opioid and dopamine neurotransmission components in LH and NAc were unaltered by fc-HFHSD or VWR. We conclude that VWR modulates fc-HFHSD component self-selection in a time-dependent manner in male Wistar rats.


Assuntos
Analgésicos Opioides , Atividade Motora , Ratos , Animais , Bovinos , Masculino , Humanos , Ratos Wistar , Analgésicos Opioides/farmacologia , Dopamina/farmacologia , Dieta Hiperlipídica , Peso Corporal , Sacarose/farmacologia
11.
Metabolism ; 123: 154839, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331964

RESUMO

BACKGROUND AND AIMS: Serotonergic and dopaminergic systems in the brain are essential for homeostatic and reward-associated regulation of food intake and systemic energy metabolism. It is largely unknown how fasting influences these systems or if such effects are altered in humans with obesity. We therefore aimed to evaluate the effects of fasting on hypothalamic/thalamic serotonin transporter (SERT) and striatal dopamine transporter (DAT) availability in lean subjects and subjects with obesity. METHODS: In this randomized controlled cross-over trial, we assessed the effects of 12 vs 24 h of fasting on SERT and DAT availability in the hypothalamus/thalamus and striatum, respectively, using SPECT imaging in 10 lean men and 10 men with obesity. RESULTS: As compared with the 12-h fast, a 24-h fast increased hypothalamic SERT availability in lean men, but not in men with obesity. We observed high inter-individual variation in the effects of fasting on thalamic SERT and striatal DAT, with no differences between lean men and those with obesity. In all subjects, fasting-induced increases in circulating free fatty acid (FFA) concentrations were associated with an increase in hypothalamic SERT availability and a decrease in striatal DAT availability. Multiple regression analysis showed that changes in plasma insulin and FFAs together accounted for 44% of the observed variation in striatal DAT availability. CONCLUSION: Lean men respond to prolonged fasting by increasing hypothalamic SERT availability, whereas this response is absent in men with obesity. Inter-individual differences in the adaptations of the cerebral serotonergic and dopaminergic systems to fasting may, in part, be explained by changes in peripheral metabolic signals of fasting, including FFAs and insulin.


Assuntos
Jejum , Hipotálamo/fisiopatologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Idoso , Estudos de Casos e Controles , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Estudos Cross-Over , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada de Emissão de Fóton Único
12.
Neurogenetics ; 11(2): 153-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20020165

RESUMO

C15orf2 (Chromosome 15 open reading frame 2) is an intronless gene, which is located in the Prader-Willi syndrome (PWS) chromosomal region on human chromosome 15. Mice do not have an orthologous gene. Here we show that expression of C15orf2 in the fetal human brain is imprinted. Using Western blot and immunohistological studies we have obtained evidence that C15orf2 protein is present in several regions of the brain. Previously published phylogenetic studies as well as population genetic studies based on complex haplotypes as described here suggest that C15orf2 is under positive Darwinian selection. These results indicate that C15orf2 might have an important role in human biology and that a deficiency of C15orf2 might contribute to PWS.


Assuntos
Cromossomos Humanos Par 15/genética , Impressão Genômica , Proteínas do Tecido Nervoso/genética , Fases de Leitura Aberta , Síndrome de Prader-Willi/genética , Seleção Genética , Alelos , Animais , Linhagem Celular , Haplótipos , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Obesity (Silver Spring) ; 28 Suppl 1: S81-S92, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32475046

RESUMO

OBJECTIVE: Eating out of phase with the endogenous biological clock alters clock and metabolic gene expression in rodents and can induce obesity and type 2 diabetes mellitus. Diet composition can also affect clock gene expression. This study assessed the combined effect of diet composition and feeding time on (1) body composition, (2) energy balance, and (3) circadian expression of hepatic clock and metabolic genes. METHODS: Male Wistar rats were fed a chow or a free-choice high-fat, high-sugar (fcHFHS) diet, either ad libitum or with food access restricted to either the light or dark period. Body weight, adiposity, and hepatic fat accumulation as well as hepatic clock and metabolic mRNA expression were measured after 5 weeks of the diet. Energy expenditure was measured using calorimetric cages. RESULTS: Animals with access to the fcHFHS diet only during the light period showed more hepatic fat accumulation than fcHFHS dark-fed animals despite less calories consumed. In contrast, within the chow-fed groups, light-fed animals showed the lowest hepatic fat content, but they also showed the lowest caloric intake. Locomotor activity and heat production followed feeding times, except in the fcHFHS light-fed group. Hepatic clock and metabolic gene expression rhythms also followed timing of food intake. Yet, in the fcHFHS light-fed animals, clock gene expression appeared 3 hours advanced compared with chow light-fed animals, an effect not observed in the fcHFHS dark-fed animals. CONCLUSIONS: An fcHFHS diet consumed in the light period promotes hepatic fat accumulation and advances clock gene expression in male Wistar rats, likely because of a mismatch between energy intake and expenditure.


Assuntos
Dieta/métodos , Fígado Gorduroso/genética , Fígado Gorduroso/fisiopatologia , Comportamento Alimentar/fisiologia , Expressão Gênica/genética , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
14.
J Comp Neurol ; 527(16): 2659-2674, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950054

RESUMO

The hypothalamic neuropeptide Y (NPY) circuitry is a key regulator of feeding behavior. NPY also acts in the mesolimbic dopaminergic circuitry, where it can increase motivational aspects of feeding behavior through effects on dopamine output in the nucleus accumbens (NAc) and on neurotransmission in the ventral tegmental area (VTA). Endogenous NPY in the NAc originates from local interneurons and afferent projections from the hypothalamic arcuate nucleus (Arc). However, the origin of endogenous NPY in the VTA is unknown. We determined, in normal-weight male Wistar rats, if the source of VTA NPY is local, and/or whether it is derived from VTA-projecting neurons. Immunocytochemistry, in situ hybridization and RT-qPCR were utilized, when appropriate in combination with colchicine treatment or 24 hr fasting, to assess NPY/Npy expression locally in the VTA. Retrograde tracing using cholera toxin beta (CTB) in the VTA, fluorescent immunocytochemistry and confocal microscopy were used to determine NPY-immunoreactive afferents to the VTA. NPY in the VTA was observed in fibers, but not following colchicine pretreatment. No NPY- or Npy-expressing cell bodies were observed in the VTA. Fasting for 24 hr, which increased Npy expression in the Arc, failed to induce Npy expression in the VTA. Double-labeling with CTB and NPY was observed in the Arc and in the ventrolateral medulla. Thus, VTA NPY originates from the hypothalamic Arc and the ventrolateral medulla of the brainstem in normal-weight male Wistar rats. These afferent connections link hypothalamic and brainstem processing of physiologic state to VTA-driven motivational behavior.


Assuntos
Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Neuropeptídeo Y/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Vias Aferentes/citologia , Vias Aferentes/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Bulbo/citologia , Bulbo/metabolismo , Microscopia Confocal , Técnicas de Rastreamento Neuroanatômico , Pró-Opiomelanocortina/metabolismo , Ratos Wistar
15.
J Neuroendocrinol ; 31(5): e12718, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30958590

RESUMO

Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Ingestão de Energia , Doenças Metabólicas/fisiopatologia , Obesidade/fisiopatologia , Animais , Comportamento de Escolha , Açúcares da Dieta/administração & dosagem , Metabolismo Energético , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Estresse Psicológico
16.
Brain Pathol ; 18(4): 474-83, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18498421

RESUMO

To evaluate whether hypocretin-1 (orexin-A) and melanin-concentrating hormone (MCH) neurotransmission are affected in patients with Huntington disease (HD), we immunohistochemically stained hypocretin and MCH neurons and estimated their total numbers in the lateral hypothalamus of both HD patients and matched controls. In addition, hypocretin-1 levels were determined in prefrontal cortical tissue and post-mortem ventricular cerebrospinal fluid (CSF) using a radioimmunoassay. The total number of hypocretin-1 neurons was significantly reduced by 30% in HD brains (P = 0.015), while the total number of MCH neurons was not significantly altered (P = 0.100). Levels of hypocretin-1 were 33% lower in the prefrontal cortex of the HD patients (P = 0.025), but ventricular CSF levels were similar to the control values (P = 0.306). Neuronal intranuclear and cytoplasmic inclusions of mutant huntingtin were present in all HD hypothalami, although with a variable distribution across different hypothalamic structures. We found a specific reduction in hypocretin signaling in patients with HD as MCH cell number was not significantly affected. It remains to be shown whether the moderate decrease in hypocretin neurotransmission could contribute to clinical symptoms. As the number of MCH-expressing neurons was not affected, alterations in MCH signaling are unlikely to have clinical effects in HD patients.


Assuntos
Doença de Huntington/metabolismo , Região Hipotalâmica Lateral/metabolismo , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Melaninas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/líquido cefalorraquidiano , Hormônios Hipofisários/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Biomarcadores/metabolismo , Contagem de Células , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Citoplasma/metabolismo , Citoplasma/patologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Doença de Huntington/patologia , Região Hipotalâmica Lateral/patologia , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Neuropeptídeos/análise , Orexinas , Radioimunoensaio
17.
Artigo em Inglês | MEDLINE | ID: mdl-29686649

RESUMO

Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

18.
Front Neurosci ; 11: 270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555094

RESUMO

Protein-folding stress at the Endoplasmic Reticulum (ER) occurs in the hypothalamus during diet-induced obesity (DIO) and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR), a controlled network of pathways inducing a set of genes that recovers ER function. However, it is unclear whether hypothalamic ER stress during DIO results from obesity related changes or from direct nutrient effects in the brain. We here investigated mRNA expression of UPR markers in the hypothalamus of rats that were exposed to a free choice high-fat high-sugar (fcHFHS) diet for 1 week and then overnight fed ad libitum, or fasted, or fat/sugar deprived (i.e., switched from obesogenic diet to chow). In addition, we determined the direct effects of fat/sugar on mRNA expression of hypothalamus UPR markers by intracarotic infusions of intralipids and/or glucose in chow-fed rats that were fasted overnight. Short term (1 week) exposure to fcHFHS diet increased adiposity compared to chow-feeding. Short term exposure to a fcHFHS diet, followed by mild food restriction overnight, induced hypothalamic ER stress in rats as characterized by an increase in spliced to unspliced X-box binding protein 1 mRNA ratio in hypothalamus of fcHFHS fed rats compared to chow fed rats. Moreover, infused lipids toward the brain of overnight fasted rats, were able to induce a similar response. Non-restricted ad libitum fcHFHS-diet fed or totally fasted rats did not show altered ratios. We also observed a clear increase in hypothalamic activating transcription factor 4 mRNA in rats on the fcHFHS diet while being ad libitum fed or when infused with intralipid via the carotic artery compared to vehicle infusions. However, we did not observe induction of downstream targets implying that this effect is a more general stress response and not related to ER stress. Overall, we conclude that the hypothalamic stress response might be a sensitive sensor of fat and energy status.

19.
Biol Psychiatry ; 60(8): 892-5, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16499879

RESUMO

BACKGROUND: Elevated arginine vasopressin (AVP) plasma levels have been observed in major depression, particularly in relation to the melancholic subtype. Two hypothalamic structures produce plasma vasopressin: the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). The aim of this study was to establish which structure is responsible for the increased vasopressin plasma levels in depression. METHODS: Using in situ hybridization, we determined the amount of vasopressin messenger ribonucleic acid (mRNA) in the PVN and SON in postmortem brain tissue of nine depressed subjects (six with the melancholic subtype) and eight control subjects. RESULTS: In the SON, a 60% increase of vasopressin mRNA expression was found in depressed compared with control subjects. In the melancholic subgroup, AVP mRNA expression was significantly increased in both the SON and the PVN compared with control subjects. CONCLUSIONS: We found increased AVP gene expression in the SON in depressed subjects. This might partly explain the observed increased vasopressin levels in depression.


Assuntos
Arginina Vasopressina/biossíntese , Transtorno Depressivo/metabolismo , Hipotálamo/metabolismo , RNA Mensageiro/biossíntese , Idoso , Idoso de 80 Anos ou mais , Arginina Vasopressina/genética , Feminino , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Núcleo Hipotalâmico Paraventricular/metabolismo , Escalas de Graduação Psiquiátrica , Suicídio/psicologia , Núcleo Supraóptico/metabolismo
20.
J Comp Neurol ; 499(6): 897-910, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17072839

RESUMO

Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of the melatonin receptor MT1 in the human hypothalamus and pituitary by immunocytochemistry. MT1 immunoreactivity showed a widespread pattern in the hypothalamus. In addition to the area of the suprachiasmatic nucleus (SCN), a number of novel sites, including the paraventricular nucleus (PVN), periventricular nucleus, supraoptic nucleus (SON), sexually dimorphic nucleus, the diagonal band of Broca, the nucleus basalis of Meynert, infundibular nucleus, ventromedial and dorsomedial nucleus, tuberomamillary nucleus, mamillary body, and paraventricular thalamic nucleus were observed to have neuronal MT1 receptor expression. No staining was observed in the nucleus tuberalis lateralis and bed nucleus of the stria terminalis. The MT1 receptor was colocalized with some vasopressin (AVP) neurons in the SCN, colocalized with some parvocellular and magnocellular AVP and oxytocine (OXT) neurons in the PVN and SON, and colocalized with some parvocellular corticotropin-releasing hormone (CRH) neurons in the PVN. In the pituitary, strong MT1 expression was observed in the pars tuberalis, while a weak staining was found in the posterior and anterior pituitary. These findings provide a neurobiological basis for the participation of melatonin in the regulation of various hypothalamic and pituitary functions. The colocalization of MT1 and CRH suggests that melatonin might directly modulate the hypothalamus-pituitary-adrenal axis in the PVN, which may have implications for stress conditions such as depression.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Melatonina/metabolismo , Ocitocina/metabolismo , Hipófise/metabolismo , Receptor MT1 de Melatonina/metabolismo , Vasopressinas/metabolismo , Adulto , Idoso , Feminino , Humanos , Hipotálamo/citologia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipófise/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA