Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Am Chem Soc ; 145(37): 20503-20510, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695639

RESUMO

Linear defects (dislocations) not only govern the mechanical properties of crystalline solids but they can also produce distinct electronic, thermal, and topological effects. Accessing this functionality requires control over the placement and geometry of single dislocations embedded in a small host volume to maximize emerging effects. Here we identify a synthetic route for rational dislocation placement and tuning in van der Waals nanowires, where the layered crystal limits the possible defect configurations and the nanowire architecture puts single dislocations in close proximity to the entire host volume. While homogeneous layered nanowires host single screw dislocations, the synthesis of radial nanowire heterostructures (here exemplified by GeS-Ge1-xSnxS monochalcogenide core-shell nanowires) transforms the defect into a mixed (helical) dislocation whose edge/screw ratio is tunable via the core-shell lattice mismatch. The ability to design nanomaterials with control over individual mixed dislocations paves the way for identifying the functional properties of dislocations and harnessing them in technology.

2.
Small ; : e2307372, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054819

RESUMO

Lateral heterostructures combining two multilayer group IV chalcogenide van der Waals semiconductors have attracted interest for optoelectronics, twistronics, and valleytronics, owing to their structural anisotropy, bulk-like electronic properties, enhanced optical thickness, and vertical interfaces enabling in-plane charge manipulation/separation, perpendicular to the trajectory of incident light. Group IV monochalcogenides support propagating photonic waveguide modes, but their interference gives rise to complex light emission patterns throughout the visible/near-infrared range both in uniform flakes and single-interface lateral heterostructures. Here, this work demonstrates the judicious integration of pure and alloyed monochalcogenide crystals into multimaterial heterostructures with unique photonic properties, notably the ability to select photonic modes with targeted discrete energies through geometric factors rather than band engineering. SnS-GeS1-x Sex -GeSe-GeS1-x Sex heterostructures with a GeS1-x Sex active layer sandwiched laterally between GeSe and SnS, semiconductors with similar optical constants but smaller bandgaps, were designed and realized via sequential vapor transport synthesis. Raman spectroscopy, electron microscopy/diffraction, and energy-dispersive X-ray spectroscopy confirm a high crystal quality of the laterally stitched components with sharp interfaces. Nanometer-scale cathodoluminescence spectroscopy provides evidence for a facile transfer of electron-hole pairs across the lateral interfaces and demonstrates the selection of photon emission at discrete energies in the laterally embedded active (GeS1- x Sex ) part of the heterostructure.

3.
Environ Sci Technol ; 57(40): 14929-14937, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737106

RESUMO

It has been proposed to use magnesium oxide (MgO) to separate carbon dioxide directly from the atmosphere at the gigaton level. We show experimental results on MgO single crystals reacting with the atmosphere for longer (decades) and shorter (days to months) periods with the goal of gauging reaction rates. Here, we find a substantial slowdown of an initially fast reaction as a result of mineral armoring by reaction products (surface passivation). In short-term experiments, we observe fast hydroxylation, carbonation, and formation of amorphous hydrated magnesium carbonate at early stages, leading to the formation of crystalline hydrated Mg carbonates. The preferential location of Mg carbonates along the atomic steps on the crystal surface of MgO indicates the importance of the reactive site density for carbonation kinetics. The analysis of 27-year-old single-crystal MgO samples demonstrates that the thickness of the reacted layer is limited to ∼1.5 µm on average, which is thinner than expected and indicates surface passivation. Thus, if MgO is to be employed for direct air capture of CO2, surface passivation must be circumvented.


Assuntos
Dióxido de Carbono , Óxido de Magnésio , Óxido de Magnésio/química , Dióxido de Carbono/química , Minerais , Carbonatos/química
4.
Angew Chem Int Ed Engl ; 62(44): e202308002, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37488071

RESUMO

Understanding the dynamic structural evolution of supported metal clusters under reaction conditions is crucial to develop structure reactivity relations. Here, we followed the structure of different size Rh clusters supported on Al2 O3 using in situ/operando spectroscopy and ex situ aberration-corrected electron microscopy. We report a dynamic evolution of rhodium clusters into thermally stable isolated single atoms upon exposure to oxygen and during CO oxidation. Rh clusters partially disperse into single atoms at room temperature and the extent of dispersion increases as the Rh size decreases and as the reaction temperature increases. A strong correlation is found between the extent of dispersion and the CO oxidation kinetics. More importantly, dispersing Rh clusters into single atoms increases the activity at room temperature by more than two orders of magnitude due to the much lower activation energy on single atoms (40 vs. 130 kJ/mol). This work demonstrates that the structure and reactivity of small Rh clusters are very sensitive to the reaction environment.

5.
J Am Chem Soc ; 143(11): 4193-4204, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33352040

RESUMO

High-entropy oxides (HEOs) have attracted great interest in diverse fields because of their inherent opportunities to tailor and combine materials functionalities. The control of local order/disorder in the class is by extension a grand challenge toward realizing their vast potential. Here we report the first examples of pyrochlore HEOs with five M-site cations, for Nd2M2O7, in which the local structure has been investigated by neutron diffraction and pair distribution function (PDF) analysis. The average structure of the pyrochlores is found to be orthorhombic Imma, in agreement with radius-ratio rules governing the structural archetype. The computed PDFs from density functional theory relaxed special quasirandom structure models are compared with real space PDFs in this work to evaluate M-site order/disorder. Reverse Monte Carlo combined with ab initio molecular dynamics and Metropolis Monte Carlo simulations demonstrates that Nd2(Ta0.2Sc0.2Sn0.2Hf0.2Zr0.2)2O7 is synthesized with its M-site local to nanoscale order highly randomized/disordered, while Nd2(Ti0.2Nb0.2Sn0.2Hf0.2Zr0.2)2O7+x exhibits a strong distortion of the TiO6 octahedron and small degree of Ti chemical short-range order (SRO) on the subnanometer scale. Calculations suggest that this may be intrinsic, energetically favored SRO rather than due to sample processing. These results offer an important demonstration that the engineered variation of participating ions in HEOs, even among those with very similar radii, provides richly diverse opportunities to control local order/disorder motifs-and therefore materials properties for future designs. This work also hints at the exquisite level of detail that may be needed in computational and experimental data analysis to guide structure-property tuning in the emerging HEO materials class.

6.
Nano Lett ; 20(11): 7995-8000, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064492

RESUMO

Ultrathin two-dimensional (2D) monolayer atomic crystal materials offer great potential for extending the field of novel separation technology due to their infinitesimal thickness and mechanical strength. One difficult and ongoing challenge is to perforate the 2D monolayer material with subnanometer pores with atomic precision for sieving similarly sized molecules. Here, we demonstrate the exceptional separation performance of ionic liquid (IL)/graphene hybrid membranes for challenging separation of CO2 and N2. Notably, the ultrathin ILs afford dynamic tuning of the size and chemical affinity of nanopores while preserving the high permeance of the monolayer nanoporous graphene membranes. The hybrid membrane yields a high CO2 permeance of 4000 GPU and an outstanding CO2/N2 selectivity up to 32. This rational hybrid design provides a universal direction for broadening gas separation capability of atomically thin nanoporous membranes.

7.
Nano Lett ; 19(9): 6418-6423, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430166

RESUMO

Intermetallic nanoparticles are remarkable due to their often enhanced catalytic, magnetic, and optical properties, which arise from their ordered crystal structures and high structural stability. Typical syntheses of intermetallic nanoparticles include thermal annealing of the disordered counterpart in atmosphere (or vacuum) or colloidal syntheses, where the phase transformation is achieved in solution. Although both methods can produce intermetallic nanoparticles, there is difficulty in achieving monodisperse nanoparticles, which is critical to exploiting their properties for various applications. Here, we show that overgrowth on random alloy AuCu nanoparticles mediated by size refocusing yields monodisperse intermetallic AuCu nanoparticles. Size refocusing has been used in syntheses of semiconductor and upconverting nanocrystals to achieve monodisperse samples, but now we demonstrate size refocusing as a mechanism to achieve the disorder-to-order phase transformation in multimetallic nanoparticles. The phase transformation was monitored by time evolution experiments, where analysis of reaction aliquots with transmission electron microscopy and powder X-ray diffraction revealed the generation and dissolution of small nanoparticles coupled with an increase in the average size of the nanoparticles and conversion to the ordered phase. This demonstration advances the understanding of intermetallic nanoparticle formation in colloidal syntheses, which can expedite the development of electrocatalysts and magnetic storage materials.

8.
J Am Chem Soc ; 141(22): 8928-8936, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31090414

RESUMO

The failure to achieve stable Ohmic contacts in two-dimensional material devices currently limits their promised performance and integration. Here we demonstrate that a phase transformation in a region of a layered semiconductor, PdSe2, can form a contiguous metallic Pd17Se15 phase, leading to the formation of seamless Ohmic contacts for field-effect transistors. This phase transition is driven by defects created by exposure to an argon plasma. Cross-sectional scanning transmission electron microscopy is combined with theoretical calculations to elucidate how plasma-induced Se vacancies mediate the phase transformation. The resulting Pd17Se15 phase is stable and shares the same native chemical bonds with the original PdSe2 phase, thereby forming an atomically sharp Pd17Se15/PdSe2 interface. These Pd17Se15 contacts exhibit a low contact resistance of ∼0.75 kΩ µm and Schottky barrier height of ∼3.3 meV, enabling nearly a 20-fold increase of carrier mobility in PdSe2 transistors compared to that of traditional Ti/Au contacts. This finding opens new possibilities in the development of better electrical contacts for practical applications of 2D materials.

9.
Nat Mater ; 17(4): 318-322, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531368

RESUMO

There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice 1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection 2 approach, which is now realized in 2D geometry. The method relies on 'self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

10.
Phys Rev Lett ; 120(9): 095901, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547334

RESUMO

Heat dissipation in integrated nanoscale devices is a major issue that requires the development of nanoscale temperature probes. Here, we report the implementation of a method that combines electron energy gain and loss spectroscopy to provide a direct measurement of the local temperature in the nanoenvironment. Loss and gain peaks corresponding to an optical-phonon mode in boron nitride were measured from room temperature to ∼1600 K. Both loss and gain peaks exhibit a shift towards lower energies as the sample is heated up. First-principles calculations of the temperature-induced phonon frequency shifts provide insights into the origin of this effect and confirm the experimental data. The experiments and theory presented here open the doors to the study of anharmonic effects in materials by directly probing phonons in the electron microscope.

14.
Nano Lett ; 17(9): 5526-5532, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28840730

RESUMO

Surface strains can enhance the performance of platinum-based core@shell electrocatalysts for the oxygen reduction reaction (ORR). Bimetallic core@shell nanoparticles (NPs) are widely studied nanocatalysts but often have limited lattice mismatch and surface compositions; investigations of core@shell NPs with greater compositional complexity and lattice misfit are in their infancy. Here, a new class of multimetallic NPs composed of intermetallic cores and random alloy shells is reported. Specifically, face-centered cubic Pt-Cu random alloy shells were deposited on PdCu B2 intermetallic seeds in a facet-dependent manner, giving rise to faceted core@shell NPs with highly strained surfaces. High-resolution transmission electron microscopy revealed orientation-dependent surface strains, where the compressive strains were greater on Pt-Cu {200} than {111} facets. These core@shell NPs provide higher specific area and mass activities for the ORR when compared to conventional Pt-Cu NPs. Moreover, these intermetallic@random alloy NPs displayed high endurance, undergoing 10,000 cycles with only a slight decay in activity and no apparent structural changes.

15.
Nano Lett ; 17(12): 7306-7314, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29136386

RESUMO

Chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes in hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.

16.
Nano Lett ; 17(8): 4576-4582, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650641

RESUMO

The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe3O4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe3O4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe3O4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe3O4, as the surface reduction of nano-Fe3O4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe3O4 and the extremely strong adhesion between Au and the reduced Fe3O4. This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

17.
Angew Chem Int Ed Engl ; 57(3): 755-759, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193619

RESUMO

Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS2 single crystals were utilized as the host material to embed Eu3+ and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu3+ was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties.

18.
Small ; 12(20): 2701-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038413

RESUMO

In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell.

19.
Environ Sci Technol ; 50(13): 7082-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27253183

RESUMO

Herein, we detail how the morphology of a nanomaterial affects its environmental lifetime in aquatic ecosystems. In particular, we focus on the cube and particle nanostructures of Ag and age them in various aquatic mediums including synthetic hard water, pond water, and seawater. Our results show that in the synthetic hard water and pond water cases, there was little difference in the rate of morphological changes as determined by UV-vis spectroscopy. However, when these samples were analyzed with transmission electron microscopy, radically different mechanisms in the loss of their original nanostructures were observed. Specifically, for the nanocube we observed that the corners of the cubes had become more rounded, whereas the aged nanoparticles formed large aggregates. Most interestingly, when the seawater samples were analyzed, the nanocubes showed a substantially higher stability in maintaining the nano length scale in comparison to nanoparticles overtime. Moreover, high-resolution transmission electron microscopy analysis allowed us to determine that Ag+ ions diffused away from both the edge and from the faces of the cube, whereas the nanoparticle rapidly aggregated under the harsh seawater conditions.


Assuntos
Tamanho da Partícula , Prata/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Nanopartículas , Nanoestruturas/química , Água/química
20.
Nano Lett ; 15(3): 2011-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25706693

RESUMO

The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Nanocompostos/ultraestrutura , Cristalização/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA