Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rheumatology (Oxford) ; 60(12): 5843-5853, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33605409

RESUMO

OBJECTIVE: Cartilage and bone damage in RA are associated with elevated IL-1ß. The effects of IL-1ß can be reduced by biological therapies that target IL-1ß or TNF-α. However, the mechanisms responsible for increased IL-1ß and the effect of anti-TNF-α have not been fully elucidated. Recently, sterile-α and armadillo motif containing protein (SARM) was identified as a negative regulator of toll-like receptor (TLR) induced IL-1ß secretion through an interaction with the inflammasome. This study set out to investigate SARM during TLR-induced IL-1ß secretion in RA peripheral blood monocytes and in patients commencing anti-TNF-α treatment. METHODS: Monocytes were isolated from RA patients and healthy controls; disease activity was measured by DAS28. IL-1ß secretion was measured by ELISA following TLR1/2, TLR4 and TLR7/8 stimulation. The mRNA expression of SARM1, IL-1ß and the components of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome were measured by quantitative PCR. SARM protein expression was measured by western blotting. RESULTS: TLR1/2 activation induced elevated IL-1ß in RA monocytes compared with healthy controls (P = 0.0009), which negatively correlated with SARM1 expression (P = 0.0086). Lower SARM expression also correlated with higher disease activity (P = 0.0246). Additionally, patients responding to anti-TNF-α treatment demonstrated a rapid upregulation of SARM, which was not observed in non-responders. CONCLUSION: Together, these data highlight a potential contribution from SARM to RA pathophysiology where decreased SARM may lead to elevated IL-1ß associated with RA pathogenesis. Furthermore, the data additionally present a potential mechanism by which TNF-α blockade can modify IL-1ß secretion.


Assuntos
Proteínas do Domínio Armadillo/genética , Artrite Reumatoide/genética , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Inflamassomos/genética , Interleucina-1beta/genética , RNA/genética , Receptor 2 Toll-Like/genética , Adulto , Proteínas do Domínio Armadillo/biossíntese , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Proteínas do Citoesqueleto/biossíntese , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/biossíntese , Masculino , Receptor 2 Toll-Like/biossíntese
2.
Rheumatology (Oxford) ; 59(11): 3533-3539, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594150

RESUMO

OBJECTIVE: RA is an autoimmune inflammatory joint disease. Both RF and ACPA are associated with more progressive disease and higher levels of systemic inflammation. Monocyte activation of toll-like receptors (TLRs) by endogenous ligands is a potential source of increased production of systemic cytokines. RA monocytes have elevated TLRs, some of which are associated with the disease activity score using 28 joints (DAS28). The aim of this study was to measure TLR-induced cytokine production from monocytes, stratified by autoantibody status, to assess if their capacity to induce cytokines is related to autoantibody status or DAS28. METHODS: Peripheral blood monocytes isolated from RA patients and healthy controls were stimulated with TLR1/2, TLR2/6, TLR4, TLR5, TLR7, TLR8 and TLR9 ligands for 18 h before measuring IL-6, TNFα and IL-10. Serum was used to confirm the autoantibody status. Cytokine levels were compared with RF, ACPA and DAS28. RESULTS: RA monocytes demonstrated significantly increased IL-6 and TNFα upon TLR1/2 stimulation and IL-6 and IL-10 upon TLR5 activation. TLR7 and TLR9 activation did not induce cytokines and no significant differences were observed between RA and healthy control monocytes upon TLR2/6, TLR4 or TLR8 activation. When stratified by ACPA or RF status there were no correlations between autoantibody status and elevated cytokine levels. However, TLR1/2-induced IL-6 did correlate with DAS28. CONCLUSIONS: Elevated TLR-induced cytokines in RA monocytes were not related to ACPA or RF status. However, TLR1/2-induced IL-6 was associated with disease activity.


Assuntos
Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Citocinas/imunologia , Monócitos/imunologia , Fator Reumatoide/imunologia , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-6/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Receptor 1 Toll-Like/agonistas , Receptor 2 Toll-Like/agonistas , Receptor 5 Toll-Like/agonistas , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
3.
Front Immunol ; 14: 1092799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954581

RESUMO

The canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) pathway involves a priming step to induce pro-IL-1ß followed by a secondary signal such as K+ efflux to activate inflammasome formation. This then leads to the maturation of IL-1ß and the formation of gasdermin D (GSDMD) pores that initiate pyroptosis and mediate IL-1ß release. In contrast, primary human monocytes also engage an alternative pathway in response to toll-like receptor (TLR) 4 activation, without the need for a secondary signal. Data from a monocyte-like cell line suggest that the alternative pathway functions via the TLR adaptor protein TIR-domain-containing adapter-inducing interferon-ß (TRIF), receptor-interacting protein kinase 1 (RIPK1), FAS-associated death domain (FADD) and caspase-8 upstream of NLRP3 activation, but in the absence of K+ efflux or pyroptosis. Usage of the alternative pathway by other members of the TLR family that induce IL-1ß but do not signal through TRIF, has yet to be explored in primary human monocytes. Furthermore, the mechanism by which IL-1ß is released from monocytes remains unclear. Therefore, this study investigated if the alternative NLRP3 inflammasome pathway is initiated following activation of TLRs other than TLR4, and if GSDMD was necessary for the release of IL-1ß. Monocytes were stimulated with ligands that activate TLR1/2, TLR2/6, TLR4 and TLR7 and/or TLR8 (using a dual ligand). Similar to TLR4, all of the TLRs investigated induced IL-1ß release in a NLRP3 and caspase-1 dependent manner, indicating that TRIF may not be an essential upstream component of the alternative pathway. Furthermore, inhibition of RIPK1 kinase activity had no effect on IL-1ß release. Although IL-1ß was released independently of K+ efflux and pyroptosis, it was significantly reduced by an inhibitor of GSDMD. Therefore, it is feasible that low level GSDMD pore formation may facilitate the release of IL-1ß from the cell, but not be present in sufficient quantities to initiate pyroptosis. Together these data suggest that the alternative pathway operates independently of RIPK1 kinase activity, downstream of diverse TLRs including TLR4 in primary human monocytes and supports the potential for IL-1ß release via GSDMD pores alongside other unconventional secretory pathways.


Assuntos
Inflamassomos , Monócitos , Humanos , Monócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Immunotargets Ther ; 10: 285-298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350135

RESUMO

Rheumatoid arthritis (RA) is a progressive autoimmune disease that is characterized by inflammation of the synovial joints leading to cartilage and bone damage. The pathogenesis is sustained by the production of pro-inflammatory cytokines including tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6, which can be targeted therapeutically to alleviate disease severity. Several innate immune receptors are suggested to contribute to the chronic inflammation in RA, through the production of pro-inflammatory factors in response to endogenous danger signals. Much research has focused on toll-like receptors and more recently the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 (NLRP3) inflammasome, which is required for the processing and release of IL-1ß. This review summarizes the current understanding of the potential involvement of these receptors in the initiation and maintenance of inflammation and tissue damage in RA and experimental arthritis models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA