Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 85(5): 945-950, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27936485

RESUMO

The cytochrome P450 monooxygenases (P450s) catalyze a vast array of oxygenation reactions that can be useful in biocatalytic applications. CYP101J2 from Sphingobium yanoikuyae is a P450 that catalyzes the hydroxylation of 1,8-cineole. Here we report the crystallization and X-ray structure elucidation of recombinant CYP101J2 to 1.8 Å resolution. The CYP101J2 structure shows the canonical P450-fold and has an open conformation in the absence of substrate. Analysis of the structure revealed that CYP101J2, in the absence of substrate, forms a well-ordered substrate-binding channel that suggests a unique form of substrate guidance in comparison to other bacterial 1,8-cineole-hydroxylating P450 enzymes. Proteins 2017; 85:945-950. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Cicloexanóis/química , Sistema Enzimático do Citocromo P-450/química , Monoterpenos/química , Sphingomonadaceae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eucaliptol , Expressão Gênica , Hidroxilação , Modelos Moleculares , Monoterpenos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sphingomonadaceae/enzimologia , Especificidade por Substrato
2.
Appl Environ Microbiol ; 82(22): 6507-6517, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590809

RESUMO

We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE: CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling.


Assuntos
Cânfora 5-Mono-Oxigenase/isolamento & purificação , Cânfora 5-Mono-Oxigenase/metabolismo , Cicloexanóis/metabolismo , Monoterpenos/metabolismo , Esgotos/microbiologia , Sphingomonadaceae/enzimologia , Biotransformação , Cânfora 5-Mono-Oxigenase/classificação , Cânfora 5-Mono-Oxigenase/genética , Citrobacter/enzimologia , Citrobacter/genética , Transporte de Elétrons , Escherichia coli/genética , Eucaliptol , Genoma Bacteriano , Hidroxilação , Microbiologia Industrial , Ligação Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Sphingomonadaceae/metabolismo
3.
Bioconjug Chem ; 23(7): 1406-14, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22646749

RESUMO

A defined bioconjugate of Aerococcus viridans L-lactate oxidase and poly(ethylene glycol) 5000 was prepared and characterized in its structural and functional properties in comparison to the unmodified enzyme. Because the L-lactate oxidase in the native form does not contain cysteines, we introduced a new site for chemical modification via thiol chemistry by substituting the presumably surface-exposed serine-218, a nonconserved residue in the amino acid sequence, with cysteine. The resulting S218C mutant was isolated from Escherichia coli and shown in kinetic assays to be similarly (i.e., about half as) active as the native enzyme, thus validating the structure-guided design of the mutation. Using maleimide-activated methoxypoly(ethylene glycol) 5000 in about 10-fold molar excess over protein, the S218C mutant was converted in high yield (94%) into PEGylated derivative, while the native enzyme was totally unreactive under equivalent conditions. PEGylation caused only a relatively small decrease (30%) in the specific activity of the S218C mutant, and it did not change the protein stability. PEGylation went along with enhancement of the apparent size of the homotetrameric L-lactate oxidase in gel permeation chromatography, from 170 kDa to 250 kDa. The protein hydrodynamic diameter determined by dynamic light scattering increased from 11.9 nm in unmodified S218C mutant to 16.4 nm in the PEGylated form. Site-selective PEGylation of the mutated L-lactate oxidase, using orthogonal maleimide-thiol coupling, could therefore facilitate incorporation of the enzyme into biosensors currently employed for determination of blood L-lactate levels, and it could also support different applications of the enzyme in applied biocatalysis.


Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Mutação , Polietilenoglicóis/química , Engenharia de Proteínas , Serina/genética , Streptococcaceae/enzimologia , Oxigenases de Função Mista/genética , Modelos Moleculares
4.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 8): 1242-1245, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28932445

RESUMO

1,8-Cineole is an abundant natural product that has the potential to be transformed into other building blocks that could be suitable alternatives to petroleum-based chemicals. Mono-hydroxy-lation of 1,8-cineole can potentially occur at eight different carbon sites around the bicyclic ring system. Using cytochrome P450 monooxygenase CYP101J2 from Sphingobium yanoikuyae B2, the hy-droxy-lation can be regioselectively directed at the C atom adjacent to the methyl-substituted quaternary bridgehead atom of 1,8-cineole. The unambiguous location of the hydroxyl functionality and the stereochemistry at this position was determined by X-ray crystal analysis. The mono-hydroxy-lated compound derived from this microorganism was determined to be (1S)-2a-hy-droxy-1,8-cineole (trivial name) or (1S,4R,6S)-1,3,3-trimethyl-2-oxabi-cyclo-[2.2.2]octan-6-ol (V) (systematic), C10H18O2. In the solid state this compound exhibits an inter-esting O-H⋯O hydrogen-bonding motif.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA