Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mod Rheumatol ; 30(3): 544-550, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30932727

RESUMO

Objectives: Intravenous immunoglobulin (IVIG) therapy is effective against some autoimmune diseases. We examined the effects of pharmaceutical immunoglobulins on the development of MPO-ANCA-associated vasculitis (MPO-AAV).Methods: Peripheral blood neutrophils were pretreated with 5 mg/ml sulfo-immunoglobulins (IVIG-S) and then exposed to 100 nM phorbol myristate acetate (PMA). Thereafter, neutrophil extracellular traps (NETs) were detected by flow cytometry. Next, Wistar-Kyoto rats were given oral administration of 10 mg/kg/day propylthiouracil for 28 days and intraperitoneal (i.p.) injection of 1 µg PMA on days 0 and 7. These rats were divided into two groups: Group 1 with i.p. injection of 400 mg/kg IVIG-S on days 8-12 and Group 2 with vehicle similarly. ANCA titers were chronologically determined by indirect immunofluorescence. On day 28, all rats were killed to examine NET formation in the peritoneum and the development of AAV.Results: IVIG-S significantly inhibited NET formation induced by PMA in vitro. NET amounts in the peritoneum in Group 1 were significantly smaller than in Group 2, and ANCA titers in Group 1 were significantly lower than in Group 2. The degree of pulmonary hemorrhage in Group 1 was also smaller than in Group 2.Conclusion: IVIG-S reduce NET formation and ameliorate the development of MPO-AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Armadilhas Extracelulares/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Neutrófilos/efeitos dos fármacos , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Imunoglobulinas Intravenosas/farmacologia , Masculino , Neutrófilos/metabolismo , Ratos
2.
Cytometry A ; 93(11): 1157-1164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253046

RESUMO

NKT cells are defined as T cells that recognize hydrophobic antigens presented by class I MHC-like molecules, including CD1d. Among CD1d-restricted NKT cells, type I and type II subsets have been noted. CD1d-restricted type I NKT cells are regarded as pro-inflammatory cells in general. On the contrary, accumulated evidence has demonstrated an anti-inflammatory property of CD1d-restricted type II NKT cells. In our earlier study using a rat model with vasculitis, we demonstrated the pro-inflammatory function of CD1d-restricted type II NKT cells and identified that one such cell recognized P518-532 of rat sterol carrier protein 2 (rSCP2518-532 ), which appeared on vascular endothelial cells presented by CD1d. Based on this evidence, we attempted to detect human CD1d-restricted type II NKT cells in peripheral blood using hSCP2518-532 , the human counterpart of rSCP2518-532, together with a CD1d tetramer in flow cytometry. First, we determined the binding of hSCP2518-532 to CD1d. Next, we detected CD3-positive hSCP2518-532 -loaded CD1d (hSCP2518-532 /CD1d) tetramer-binding cells in peripheral blood of healthy donors. The abundance of TGF-ß-producing cells rather than TNF-α-producing cells in CD3-positive hSCP2518-532 /CD1d tetramer-binding cells suggests the anti-inflammatory property of SCP2-loaded CD1d (SCP2/CD1d) tetramer-binding type II NKT cells in healthy individuals. Furthermore, we compared cytokine profile between healthy individuals and patients with vasculitis in a pilot study. Interestingly, the percentage of TGF-ß-producing cells in SCP2/CD1d tetramer-binding type II NKT cells in vasculitic patients was significantly lower than that in healthy controls despite the greater number of these cells. Although further studies to clarify the mechanism and significance of this phenomenon are needed, SCP2/CD1d tetramer-binding type II NKT cells in peripheral blood should be examined in more detail to understand the pathophysiology of vasculitides in humans. © 2018 International Society for Advancement of Cytometry.


Assuntos
Células T Matadoras Naturais/imunologia , Vasculite/imunologia , Adulto , Idoso , Antígenos CD1d/imunologia , Complexo CD3/imunologia , Proteínas de Transporte/imunologia , Feminino , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fator de Crescimento Transformador beta/imunologia , Adulto Jovem
3.
FEBS Open Bio ; 13(1): 60-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271697

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome and multiple organ dysfunction, in which the host immune response plays a pivotal role. Excessive neutrophil activation and subsequent superfluity of neutrophil extracellular traps (NETs) can lead to tissue damage, and several studies have shown the involvement of neutrophils in severe COVID-19. However, the detailed responses of each neutrophil subset to SARS-CoV-2 infection has not been fully described. To explore this issue, we incubated normal-density granulocytes (NDGs) and low-density granulocytes (LDGs) with different viral titers of SARS-CoV-2. NDGs form NETs with chromatin fibers in response to SARS-CoV-2, whereas LDGs incubated with SARS-CoV-2 display a distinct morphology with condensed nuclei and moderate transcriptional changes. Based on these transcriptional changes, we suggest that AGO2 possibly plays a role in LDG regulation in response to SARS-CoV-2.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , SARS-CoV-2 , Granulócitos , Neutrófilos
4.
Cell Death Discov ; 9(1): 293, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563112

RESUMO

Acute kidney injury (AKI) is a common and severe complication of the coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly affects the glomerular and tubular epithelial cells to induce AKI; however, its pathophysiology remains unclear. Here, we explored the underlying mechanisms and therapeutic targets of renal involvement in COVID-19. We developed an in vitro human kidney cellular model, including immortalized tubular epithelial and endothelial cell lines, demonstrating that SARS-CoV-2 directly triggers cell death. To identify the molecular targets in the process of SARS-CoV-2-mediated cell injury, we performed transcriptional analysis using RNA sequencing. Tubular epithelial cells were more prone to dying by SARS-CoV-2 than endothelial cells; however, SARS-CoV-2 did not replicate in renal cells, distinct from VeroE6/transmembrane protease serine 2 cells. Transcriptomic analysis revealed increased inflammatory and immune-related gene expression levels in renal cells incubated with SARS-CoV-2. Toll-like receptor (TLR) 3 in renal cells recognized viral RNA and underwent cell death. Furthermore, analysis of upstream regulators identified several key transcriptional regulators. Among them, inhibition of the interleukin-1 receptor (IL-1R) and TLR4 pathways protects tubular epithelial and endothelial cells from injury via regulation of the signal transducer and activator of transcription protein-3/nuclear factor-kB pathway. Our results reveal that SARS-CoV-2 directly injures renal cells via the proinflammatory response without viral replication, and that IL-1R and TLR4 may be used as therapeutic targets for SARS-CoV-2 mediated kidney injury.

5.
Pathol Res Pract ; 220: 153381, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33640711

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that causes coronavirus disease 2019, which spread worldwide immediately after the first patient infected with this virus was discovered in Wuhan, China, in December 2019. Currently, polymerase chain reaction (PCR) specimens for the detection of SARS-CoV-2 include saliva, nasopharyngeal swabs, and lower respiratory tract-derived materials such as sputum. Initially, nasopharyngeal swab specimens were applied mainly to the PCR detection of SARS-CoV-2. There was a risk of infection to healthcare workers due to coughing or sneezing by the subjects at the time of sample collection. In contrast, saliva specimens have a low risk of droplet infection and are easy to collect, and their application to PCR testing has been promoted. In this study, we have determined the detection limit of SARS-CoV-2 in saliva samples and examined the effects of storage temperature and storage time of saliva samples on the PCR detection results. As a result, 5 × 103 copies of SARS-CoV-2 could be detected in 1 mL phosphate-buffered saline, whereas 5 × 104 copies of SARS-CoV-2 were needed in 1 mL saliva to detect the virus by real-time one-step PCR. Interestingly, SARS-CoV-2 (5 × 103 copies/mL) could be detected in saliva supplemented with an RNase inhibitor. Concerning the saliva samples supplemented with an RNase inhibitor, the optimal temperature for sample storage was -20 °C, and PCR detection was maintained within 48 h without problems under these conditions. These finding suggest that RNase in the saliva can affect the detection of SARS-CoV-2 by PCR using saliva samples.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ribonucleases , SARS-CoV-2 , Saliva/virologia , Humanos , Limite de Detecção , RNA Viral/análise , Saliva/enzimologia , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA