Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neuroinflammation ; 20(1): 297, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087314

RESUMO

Extracellular vesicles (EVs) released by human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) are enriched with miRNAs and proteins capable of mediating robust antiinflammatory activity. The lack of tumorigenic and immunogenic properties and ability to permeate the entire brain to incorporate into microglia following intranasal (IN) administrations makes them an attractive biologic for curtailing chronic neuroinflammation in neurodegenerative disorders. We tested the hypothesis that IN administrations of hiPSC-NSC-EVs can alleviate chronic neuroinflammation and cognitive impairments induced by the peripheral lipopolysaccharide (LPS) challenge. Adult male, C57BL/6J mice received intraperitoneal injections of LPS (0.75 mg/kg) for seven consecutive days. Then, the mice received either vehicle (VEH) or hiPSC-NSC-EVs (~ 10 × 109 EVs/administration, thrice over 6 days). A month later, mice in all groups were investigated for cognitive function with behavioral tests and euthanized for histological and biochemical studies. Mice receiving VEH after LPS displayed deficits in associative recognition memory, temporal pattern processing, and pattern separation. Such impairments were associated with an increased incidence of activated microglia presenting NOD-, LRR-, and pyrin domain containing 3 (NLRP3) inflammasomes, elevated levels of NLRP3 inflammasome mediators and end products, and decreased neurogenesis in the hippocampus. In contrast, the various cognitive measures in mice receiving hiPSC-NSC-EVs after LPS were closer to naive mice. Significantly, these mice displayed diminished microglial activation, NLRP3 inflammasomes, proinflammatory cytokines, and a level of neurogenesis matching age-matched naïve controls. Thus, IN administrations of hiPSC-NSC-EVs are an efficacious approach to reducing chronic neuroinflammation-induced cognitive impairments.


Assuntos
Disfunção Cognitiva , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Camundongos , Masculino , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Células-Tronco Neurais/metabolismo , Hipocampo/metabolismo , Neurogênese
2.
Brain Behav Immun ; 108: 118-134, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427808

RESUMO

Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , MicroRNAs , Proteína Quinase 14 Ativada por Mitógeno , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Vesículas Extracelulares/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , MicroRNAs/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais , Células-Tronco Mesenquimais
3.
Immunopharmacol Immunotoxicol ; 45(4): 497-507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786742

RESUMO

The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Secretoma , Anti-Inflamatórios , Vesículas Extracelulares/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
4.
Brain Behav Immun ; 98: 219-233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389489

RESUMO

Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.


Assuntos
Fator D de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Animais , Dendritos , Camundongos , Plasticidade Neuronal , Neurônios , Transdução de Sinais
5.
Brain Behav Immun ; 81: 430-443, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255677

RESUMO

Cognitive dysfunction and neuroinflammation are conspicuously observed in Gulf War Illness (GWI). We investigated whether brain inflammation in GWI is associated with activation of high mobility group box-1 (HMGB1) and complement-related proteins in neurons and astrocytes, and brain inflammation can be tracked through neuron-derived extracellular vesicles (NDEVs) and astrocyte-derived EVs (ADEVs) found in the circulating blood. We exposed animals to GWI-related chemicals pyridostigmine bromide, DEET and permethrin, and moderate stress for 28 days. We performed behavioral tests 10 months post-exposure and quantified activated microglia and reactive astrocytes in the cerebral cortex. Then, we measured the concentration of HMGB1, proinflammatory cytokines, and complement activation-related proteins in the cerebral cortex, and NDEVs and ADEVs in the circulating blood. Cognitive impairments persisted in GWI rats at 10 months post-exposure, which were associated with increased density of activated microglia and reactive astrocytes in the cerebral cortex. Moreover, the level of HMGB1 was elevated in the cerebral cortex with altered expression in the cytoplasm of neuronal soma and dendrites as well as the extracellular space. Also, higher levels of proinflammatory cytokines (TNFa, IL-1b, and IL-6), and complement activation-related proteins (C3 and TccC5b-9) were seen in the cerebral cortex. Remarkably, increased levels of HMGB1 and proinflammatory cytokines observed in the cerebral cortex of GWI rats could also be found in NDEVs isolated from the blood. Similarly, elevated levels of complement proteins seen in the cerebral cortex could be found in ADEVs. The results provide new evidence that persistent cognitive dysfunction and chronic neuroinflammation in a model of GWI are linked with elevated HMGB1 concentration and complement activation. Furthermore, the results demonstrated that multiple biomarkers of neuroinflammation could be tracked reliably via analyses of NDEVs and ADEVs in the circulating blood. Execution of such a liquid biopsy approach is especially useful in clinical trials for monitoring the remission, persistence or progression of brain inflammation in GWI patients with drug treatment.


Assuntos
Ativação do Complemento/imunologia , Encefalite/imunologia , Proteína HMGB1/imunologia , Síndrome do Golfo Pérsico/imunologia , Animais , Astrócitos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/metabolismo , DEET/farmacologia , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Guerra do Golfo , Inflamação/imunologia , Masculino , Neuroimunomodulação/imunologia , Neurônios/metabolismo , Permetrina/farmacologia , Brometo de Piridostigmina/farmacologia , Ratos
6.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888012

RESUMO

Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer's disease.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/citologia , Prosencéfalo/citologia , Estado Epiléptico/terapia , Administração Intranasal , Animais , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/química , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Compostos Orgânicos/farmacologia , Prosencéfalo/metabolismo , Ratos , Estado Epiléptico/metabolismo , Resultado do Tratamento
7.
J Biomol Struct Dyn ; : 1-14, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686917

RESUMO

Despite considerable improvement in therapy and diagnosis, brain tumors remain a global public health concern. Among all brain tumors, 80% are due to Glioblastoma. The average survival rate of a patient once diagnosed with glioblastoma is 15 months. Lately, the role of peptidase enzymes, especially Neprilysin, a neutral endopeptidase, is gaining attention for its role in tumor growth regulation. Neprilysin expressions are positively correlated with several tumors including GBM and reduced expression of NEP protein is associated with the pathogenesis of multiple tumors. One of the main reasons for NEP protein downregulation is the action of Histone deacetylase (HDAC) enzymes, especially HDAC1. Additionally, studies have reported that increased levels of HDAC1 are responsible for downregulating NEP gene expression. Hence, HDAC1 inhibition can be a good target to elevate NEP levels, which can be a good therapeutic approach to GBM. This study utilizes the computational drug repurposing tool, Schrodinger Maestro to identify HDAC1 inhibitors from the ZINC15 database.1379 FDA-approved drugs from the ZINC15 database were screened through molecular docking. Based on docking score and ligand-protein interaction, the top ten molecules were selected which were then subjected to binding energy calculation and molecular dynamics (MD) simulations. The three most active drugs from the MD simulations- ZINC22010649 (Panobinostat), ZINC4392649 (Tasimelteon) and ZINC1673 (Melphalan), were tested on C6 and U87 MG glioblastoma cells for cytotoxicity and HDAC1 protein levels using western blot analysis. Among the three drugs, Panobinostat exhibited potent cytotoxic action and showed a significant reduction in the HDAC1 protein levels.Communicated by Ramaswamy H. Sarma.

8.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071270

RESUMO

Background: One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aß-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aß-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aß-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aß-42o-induced neurodegeneration. Methods: We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aß-42 oligomers (Aß-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aß-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results: Significant neurodegeneration was observed when human neurons were exposed to Aß-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aß-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions: The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aß-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.

9.
Stem Cell Res Ther ; 15(1): 108, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637847

RESUMO

BACKGROUND: Epilepsy affects ∼60 million people worldwide. Most antiseizure medications in the market act on voltage-gated sodium or calcium channels, indirectly modulating neurotransmitter GABA or glutamate levels or multiple targets. Earlier studies made significant efforts to directly deliver GABA into the brain with varied success. Herein, we have hypothesized to directly deliver exogenous GABA to the brain with epilepsy through extracellular vesicles (EVs) from human GABA-producing cells and their progenitors as EVs largely mimic their parent cell composition. METHODS: Human neural stem cells (NSCs), medial ganglionic eminence (MGE) cells, and GABAergic interneurons (INs) were generated from induced pluripotent stem cells (iPSCs) and characterized. EVs were isolated from NSCs, MGE cells, and INs and characterized for size and distribution, morphological features, and molecular markers. Exogenous GABA was passively loaded to the isolated EVs as a zwitterion at physiological pH, and the encapsulated dose of GABA was quantified. Epilepsy was developed through status epilepticus induction in Fisher rats by administration of repeated low doses of kainic acid. The extent of the seizures was measured for 10 h/ day for 3-6 months by video recording and its evaluation for stage III, IV and V seizures as per Racine scale. EVs from INs, MGE cells, and NSCs encapsulated with exogenous GABA were sequentially tested in the 4th, 5th, and 6th months by intranasal administration in the rats with epilepsy for detailed seizure, behavioral and synapse analysis. In separate experiments, several controls including exogenic GABA alone and EVs from INs and MGE cells were evaluated for seizure-controlling ability. RESULTS: Exogenic GABA could enter the brain through EVs. Treatment with EVs from INs and MGE cells encapsulated with GABA significantly reduced total seizures, stage V seizures, and total time spent in seizure activity. EVs from NSCs encapsulated with GABA demonstrated limited seizure control. Exogenic GABA alone and EVs from INs and MGE cells individually failed to control seizures. Further, exogenic GABA with EVs from MGE cells improved depressive behavior while partially improving memory functions. Co-localization studies confirmed exogenous GABA with presynaptic vesicles in the hippocampus, indicating the interaction of exogenous GABA in the brain with epilepsy. CONCLUSION: For the first time, the study demonstrated that exogenous GABA could be delivered to the brain through brain cell-derived EVs, which could regulate seizures in temporal lobe epilepsy. It is identified that the cellular origin of EVs plays a vital role in seizure control with exogenous GABA.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Vesículas Extracelulares , Humanos , Ratos , Animais , Convulsões/tratamento farmacológico , Epilepsia/terapia , Epilepsia do Lobo Temporal/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia
10.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293018

RESUMO

Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aß) plaques, Aß-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.

11.
Front Mol Neurosci ; 16: 1185883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284464

RESUMO

An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.

12.
Infect Agent Cancer ; 18(1): 47, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641095

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS: This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS: We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS: Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION: This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.

13.
Front Aging Neurosci ; 15: 1200445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424631

RESUMO

Introduction: Extracellular vesicles (EVs) released by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) have robust antiinflammatory and neurogenic properties due to therapeutic miRNAs and proteins in their cargo. Hence, hiPSC-NSC-EVs are potentially an excellent biologic for treating neurodegenerative disorders, including Alzheimer's disease (AD). Methods: This study investigated whether intranasally (IN) administered hiPSC-NSC-EVs would quickly target various neural cell types in the forebrain, midbrain, and hindbrain regions of 3-month-old 5xFAD mice, a model of ß-amyloidosis and familial AD. We administered a single dose of 25 × 109 hiPSC-NSC-EVs labeled with PKH26, and different cohorts of naïve and 5xFAD mice receiving EVs were euthanized at 45 min or 6 h post-administration. Results: At 45 min post-administration, EVs were found in virtually all subregions of the forebrain, midbrain, and hindbrain of naïve and 5xFAD mice, with predominant targeting and internalization into neurons, interneurons, and microglia, including plaque-associated microglia in 5xFAD mice. EVs also came in contact with the plasma membranes of astrocytic processes and the soma of oligodendrocytes in white matter regions. Evaluation of CD63/CD81 expression with the neuronal marker confirmed that PKH26 + particles found within neurons were IN administered hiPSC-NSC-EVs. At 6 h post-administration, EVs persisted in all cell types in both groups, with the distribution mostly matching what was observed at 45 min post-administration. Area fraction (AF) analysis revealed that, in both naïve and 5xFAD mice, higher fractions of EVs incorporate into forebrain regions at both time points. However, at 45 min post-IN administration, AFs of EVs within cell layers in forebrain regions and within microglia in midbrain and hindbrain regions were lower in 5xFAD mice than naïve mice, implying that amyloidosis reduces EV penetrance. Discussion: Collectively, the results provide novel evidence that IN administration of therapeutic hiPSC-NSC-EVs is an efficient avenue for directing such EVs into neurons and glia in all brain regions in the early stage of amyloidosis. As pathological changes in AD are observed in multiple brain areas, the ability to deliver therapeutic EVs into various neural cells in virtually every brain region in the early stage of amyloidosis is attractive for promoting neuroprotective and antiinflammatory effects.

14.
Front Mol Neurosci ; 15: 845542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656007

RESUMO

Extracellular vesicles (EVs) shed by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (hNSC-EVs) have shown potent antiinflammatory properties in a mouse macrophage assay and a mouse model of acute neuroinflammation. They can also quickly permeate the entire brain after intranasal administration, making them attractive as an autologous or allogeneic off-the-shelf product for treating neurodegenerative diseases. However, their ability to modulate activated human microglia and specific proteins and miRNAs mediating antiinflammatory effects of hNSC-EVs are unknown. We investigated the proficiency of hNSC-EVs to modulate activated human microglia and probed the role of the protein pentraxin 3 (PTX3) and the miRNA miR-21-5p within hNSC-EVs in mediating the antiinflammatory effects. Mature microglia generated from hiPSCs (iMicroglia) expressed multiple microglia-specific markers. They responded to lipopolysaccharide (LPS) or interferon-gamma challenge by upregulating tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) mRNA expression and protein release. iMicroglia also exhibited proficiency to phagocytose amyloid-beta (Aß). The addition of hNSC-EVs decreased TNF-α and IL-1ß mRNA expression and the release of TNF-α and IL-1ß by LPS-stimulated iMicroglia (proinflammatory human Microglia). However, the antiinflammatory activity of hNSC-EVs on LPS-stimulated microglia was considerably diminished when the PTX3 or miR-21-5p concentration was reduced in EVs. The results demonstrate that hNSC-EVs are proficient for modulating the proinflammatory human microglia into non-inflammatory phenotypes, implying their utility to treat neuroinflammation in neurodegenerative diseases. Furthermore, the role of PTX3 and miR-21-5p in the antiinflammatory activity of hNSC-EVs provides a new avenue for improving the antiinflammatory effects of hNSC-EVs through PTX3 and/or miR-21-5p overexpression.

15.
Front Immunol ; 13: 853000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572589

RESUMO

Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.


Assuntos
Disfunção Cognitiva , Síndrome do Golfo Pérsico , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Camundongos , Doenças Neuroinflamatórias , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/psicologia , Ratos
16.
Aging Dis ; 13(2): 583-613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35371600

RESUMO

Unrelenting cognitive and mood impairments concomitant with incessant oxidative stress and neuroinflammation are among the significant symptoms of chronic Gulf War Illness (GWI). Curcumin (CUR), an antiinflammatory compound, has shown promise to alleviate brain dysfunction in a model of GWI following intraperitoneal administrations at a high dose. However, low bioavailability after oral treatment has hampered its clinical translation. Therefore, this study investigated the efficacy of low-dose, intermittent, oral polymer nanoparticle encapsulated CUR (nCUR) for improving brain function in a rat model of chronic GWI. Intermittent administration of 10 or 20 mg/Kg nCUR for 8 weeks in the early phase of GWI improved brain function and reduced oxidative stress (OS) and neuroinflammation. We next examined the efficacy of 12-weeks of intermittent nCUR at 10 mg/Kg in GWI animals, with treatment commencing 8 months after exposure to GWI-related chemicals and stress, mimicking treatment for the persistent cognitive and mood dysfunction displayed by veterans with GWI. GWI rats receiving nCUR exhibited better cognitive and mood function associated with improved mitochondrial function and diminished neuroinflammation in the hippocampus. Improved mitochondrial function was evident from normalized expression of OS markers, antioxidants, and mitochondrial electron transport genes, and complex proteins. Lessened neuroinflammation was noticeable from reductions in astrocyte hypertrophy, NF-kB, activated microglia with NLRP3 inflammasomes, and multiple proinflammatory cytokines. Moreover, nCUR treated animals displayed enhanced neurogenesis with a normalized expression of synaptophysin puncta, and multiple genes linked to cognitive dysfunction. Thus, low-dose, intermittent, oral nCUR therapy has promise for improving brain function in veterans with GWI.

17.
Aging Dis ; 12(6): 1358-1362, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527414

RESUMO

The journal, Aging and Disease, has released a special issue on "Extracellular Vesicles (EVs) in Health and Disease." The special issue comprises review and original research articles discussing the role of EVs in aging and senescence, the utility of evaluating EVs in body fluids for understanding the pathophysiology or progression of various diseases such as Parkinson's Disease, Multiple Sclerosis, Chronic Traumatic Encephalopathy, and Morphine induced amyloidopathy. Also, a series of articles discussed the promise of stem cell-derived EVs for treating Parkinson's Disease, Sjogren's Syndrome, and Inflammatory Bowel Disease, and advancements in loading EVs to deliver nucleic acid therapies. This editorial discusses the highlights from these articles.

18.
Aging Dis ; 12(6): 1438-1450, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527420

RESUMO

Extracellular vesicles (EVs) shed by neurons and glia in the central nervous system carry a cargo of specific bioactive molecules, facilitating intercellular communication. However, in neurodegenerative disease conditions, EVs carry pathological miRNAs and/or proteins involved in spreading the disease. Such EVs are also found in the cerebrospinal fluid (CSF) or the circulating blood, the characterization of which could identify biomarkers linked to specific neurodegenerative diseases. Moreover, EVs secreted by various stem/progenitor cells carry therapeutic miRNAs and proteins, which have shown promise to alleviate symptoms and slow down the progression of neurodegenerative diseases. The ability of exogenously administered EVs to easily cross the blood-brain barrier with no risk for thrombosis and incorporate into neurons and glia has also opened up the possibility of using nano-sized EVs as carriers of therapeutic drugs or bioactive proteins. This review summarizes the role and function of EVs in alpha-synuclein-mediated neurodegeneration and the spread of alpha-synuclein from neurons to glia, leading to the activation of the inflammatory response in Parkinson's disease (PD). Moreover, the promise of brain-derived EVs in the CSF and the circulating blood for biomarker discovery and the efficacy of stem/progenitor cell-derived EVs or EVs loaded with bioactive molecules such as dopamine, catalase, curcumin, and siRNAs, in alleviating Parkinsonian symptoms are discussed.

19.
Aging Cell ; 20(2): e13277, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33443781

RESUMO

Metformin, a drug widely used for treating diabetes, can prolong the lifespan in several species. Metformin also has the promise to slow down age-related cognitive impairment. However, metformin's therapeutic use as an anti-aging drug is yet to be accepted because of conflicting animal and human studies results. We examined the effects of metformin treatment in late middle age on cognitive function in old age. Eighteen-month-old male C57BL6/J mice received metformin or no treatment for 10 weeks. A series of behavioral tests revealed improved cognitive function in animals that received metformin. Such findings were evident from a better ability for pattern separation, object location, and recognition memory function. Quantification of microglia revealed that metformin treatment reduced the incidence of pathological microglial clusters with alternative activation of microglia into an M2 phenotype, displaying highly ramified processes in the hippocampus. Metformin treatment also seemed to reduce astrocyte hypertrophy. Additional analysis demonstrated that metformin treatment in late middle age increased adenosine monophosphate-activated protein kinase activation, reduced proinflammatory cytokine levels, and the mammalian target of rapamycin signaling, and enhanced autophagy in the hippocampus. However, metformin treatment did not alter neurogenesis or synapses in the hippocampus, implying that improved cognitive function with metformin did not involve enhanced neurogenesis or neosynaptogenesis. The results provide new evidence that metformin treatment commencing in late middle age has promise for improving cognitive function in old age. Modulation of microglia, proinflammatory cytokines, and autophagy appear to be the mechanisms by which metformin facilitated functional benefits in the aged brain.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Metformina/farmacologia , Microglia/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
20.
J Control Release ; 323: 225-239, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32289328

RESUMO

Extracellular vesicles (EVs) released by neural cells play an essential role in brain homeostasis and the crosstalk between neural cells and the periphery. EVs are diverse, nano-sized vesicles, which transport proteins, nucleic acids, and lipids between cells over short and long expanses and hence are proficient for modulating the target cells. EVs released from neural cells are implicated in synaptic plasticity, neuron-glia interface, neuroprotection, neuroregeneration, and the dissemination of neuropathological molecules. This review confers the various properties of EVs secreted by astrocytes and their potential role in health and disease with a focus on evolving concepts. Naïve astrocytes shed EVs containing a host of neuroprotective compounds, which include fibroblast growth factor-2, vascular endothelial growth factor, and apolipoprotein-D. Stimulated astrocytes secrete EVs with neuroprotective molecules including heat shock proteins, synapsin 1, unique microRNAs, and glutamate transporters. Well-characterized astrocyte-derived EVs (ADEVs) generated in specific culture conditions and ADEVs that are engineered to carry the desired miRNAs or proteins are likely useful for treating brain injury and neurogenerative diseases. On the other hand, in conditions such as Alzheimer's disease (AD), stroke, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and other neuroinflammatory conditions, EVs released by activated astrocytes appear to mediate or exacerbate the pathological processes. The examples include ADEVs spreading the dysregulated complement system in AD, mediating motoneuron toxicity in ALS, and stimulating peripheral leukocyte migration into the brain in inflammatory conditions. Strategies restraining the release of EVs by activated astrocytes or modulating the composition of ADEVs are likely beneficial for treating neurodegenerative diseases. Also, periodic analyses of ADEVs in the blood is useful for detecting astrocyte-specific biomarkers in different neurological conditions and for monitoring disease progression and remission with distinct therapeutic approaches.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doenças Neurodegenerativas , Astrócitos , Humanos , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA