Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chem ; 92(16): 10952-10956, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32693576

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a widely used technique for detecting and quantifying target analytes in clinical and research laboratories. One of the main drawbacks of ELISA is the involvement of multiple washing steps that desorbs the capture antigen/antibody off the polystyrene plate, thereby producing inconsistent and erroneous data. To overcome the problem of desorption, we hypothesized that gelatin nanoparticles (GelNP) could serve as a "plate-adherent" substrate to irreversibly adhere the capture antigen/antibody of interest. We tested our hypothesis using GelNP-based substrate (Gel-BSA-OHG) to adhere 8-hydroxy-2'-deoxyguanosine (8-OHdG) to the polystyrene plate and assayed this molecule using the ELISA technique. The stability and ELISA performance of Gel-BSA-OHG was evaluated in comparison to the conventional substrate (BSA-OHG). Importantly, the Gel-BSA-OHG substrate was found to be more wash-resistant and consequently resulted in improved sensitivity, accuracy, and precision in the ELISA analysis of 8-OHdG. Finally, the scope of Gel-BSA-OHG substrate-based ELISA for clinical application was demonstrated by validating its ability to detect 8-OHdG in an artificial urine sample with high specificity.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/urina , Ensaio de Imunoadsorção Enzimática/métodos , Gelatina/química , Nanopartículas/química , 8-Hidroxi-2'-Desoxiguanosina/química , Adsorção , Animais , Bovinos , Estudo de Prova de Conceito , Soroalbumina Bovina/química
2.
Mo Med ; 117(3): 184-195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636542

RESUMO

Diagnostic tests for the coronavirus infection 2019 (COVID-19) are critical for prompt diagnosis, treatment and isolation to break the cycle of transmission. A positive real-time reverse-transcriptase polymerase chain reaction (RT-PCR), in conjunction with clinical and epidemiologic data, is the current standard for diagnosis, but several challenges still exist. Serological assays help to understand epidemiology better and to evaluate vaccine responses but they are unreliable for diagnosis in the acute phase of illness or assuming protective immunity. Serology is gaining attention, mainly because of convalescent plasma gaining importance as treatment for clinically worsening COVID-19 patients. We provide a narrative review of peer-reviewed research studies on RT-PCR, serology and antigen immune-assays for COVID-19, briefly describe their lab methods and discuss their limitations for clinical practice.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/normas , Pandemias , SARS-CoV-2
3.
Anal Bioanal Chem ; 411(6): 1297, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30613839

RESUMO

The authors would like to bring to the reader's attention that the Clarke error grid plot presented in Fig. 3 was generated using codes adapted from following reference.

4.
Nanomedicine ; 20: 102007, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085346

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality with the 5-year survival rate at a dismal 16% for the past 40 years. Drug resistance is a major obstacle to achieving long-term patient survival. Identifying and validating molecular biomarkers responsible for resistance and thereby adopting multi-directional therapy is necessary to improve the survival rate. Previous studies indicated ~20% of tyrosine kinase inhibitor (TKI) resistant NSCLC patients overexpress AXL with increase in EMT and decrease in p53 expression. To overcome the resistance, we designed gelatin nanoparticles covalently conjugated with EGFR targeting antibody and siRNA (GAbsiAXL). GAbsiAXL efficiently silences AXL, decreases mTOR and EMT signaling with concomitant increase in p53 expression. Because of the molecular changes, the AXL silencing sensitizes the cells to TKI. Our results show AXL overexpression has an important role in driving TKI resistance through close association with energy-dependent mitochondrial pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transição Epitelial-Mesenquimal , Nanoconjugados/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Anticorpos/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Gelatina/química , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares , Metaloproteinases da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tirosina Quinase Axl
5.
Anal Bioanal Chem ; 410(25): 6469-6475, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30046865

RESUMO

Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of research. Recent efforts in this direction have been inclined towards reducing the requirement of calibration framework. Here, we are presenting a systematic investigation on the influence of variation in the ratio of calibration and validation points on the prospective predictive accuracy of spectral models. A fiber-optic probe coupled Raman system has been employed for transcutaneous measurements. Limit of agreement analysis between serum and partial least square regression predicted spectroscopic glucose values has been performed for accurate comparison. Findings are suggestive of strong predictive accuracy of spectroscopic models without requiring substantive calibration measurements. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia , Modelos Biológicos , Análise Espectral Raman/métodos , Análise Espectral Raman/normas , Glicemia/análise , Calibragem , Análise dos Mínimos Quadrados , Estudos de Validação como Assunto
6.
Bioconjug Chem ; 27(4): 1153-64, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27003101

RESUMO

To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake.


Assuntos
Ouro/química , Nanopartículas Metálicas , Neoplasias Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos
7.
Arch Insect Biochem Physiol ; 93(4): 190-201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27509382

RESUMO

Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often based on simplistic methods that yield nanoparticles of nonuniform shapes and sizes, leaving questions about the precise treatments test insects experienced. Second, we do not know how AgNPs influence beneficial insects. This work addresses these issues. We assessed the influence of AgNPs on life history parameters of two agricultural pest insect species, Heliothis virescens (tobacco budworm) and Trichoplusia ni (cabbage looper) and a beneficial predatory insect species, Podisus maculiventris (spined soldier bug), all of which act in agroecosystems. Rearing the two pest species on standard media amended with AgNPs led to negligible influence on developmental times, pupal weights, and adult emergence, however, they led to retarded development, reductions in adult weight and fecundity, and increased mortality in the predator. These negative effects on the beneficial species, if also true for other beneficial insect species, would have substantial negative implications for continued development of AgNPs for insect pest management programs.


Assuntos
Dieta , Heterópteros/efeitos dos fármacos , Nanopartículas Metálicas , Mariposas/efeitos dos fármacos , Prata/toxicidade , Animais , Feminino , Heterópteros/genética , Heterópteros/crescimento & desenvolvimento , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Nanopartículas Metálicas/toxicidade , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Ninfa/efeitos dos fármacos , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Controle Biológico de Vetores , Pupa
8.
Proc Natl Acad Sci U S A ; 109(31): 12426-31, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802668

RESUMO

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the (198)Au ß-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible (198)AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of (198)AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable (198)AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Assuntos
Anticarcinógenos/farmacocinética , Catequina/análogos & derivados , Ouro/farmacocinética , Nanopartículas Metálicas , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Catequina/farmacocinética , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Radioisótopos de Ouro/farmacocinética , Radioisótopos de Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Tamanho da Partícula , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Proc Natl Acad Sci U S A ; 107(19): 8760-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20410458

RESUMO

Development of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides. Cellular interactions and binding affinities (IC(50)) of AuNP-BBN conjugates toward GRP receptors on human prostate cancer cells have been investigated in detail. In vivo studies using AuNP-BBN and its radiolabeled surrogate (198)AuNP-BBN, exhibiting high binding affinity (IC(50) in microgram ranges), provide unequivocal evidence that AuNP-BBN constructs are GRP-receptor-specific showing accumulation with high selectivity in GRP-receptor-rich pancreatic acne in normal mice and also in tumors in prostate-tumor-bearing, severe combined immunodeficient mice. The i.p. mode of delivery has been found to be efficient as AuNP-BBN conjugates showed reduced RES organ uptake with concomitant increase in uptake at tumor targets. The selective uptake of this new generation of GRP-receptor-specific AuNP-BBN peptide analogs has demonstrated realistic clinical potential in molecular imaging via x-ray computed tomography techniques as the contrast numbers in prostate tumor sites are severalfold higher as compared to the pretreatment group (Hounsfield unit = 150).


Assuntos
Bombesina/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Receptores da Bombesina/metabolismo , Animais , Bombesina/administração & dosagem , Bombesina/química , Bombesina/farmacocinética , Linhagem Celular Tumoral , Ouro/administração & dosagem , Ouro/farmacocinética , Humanos , Injeções Intraperitoneais , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Peso Molecular , Solubilidade/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Anal Chem ; 84(21): 9478-84, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23004345

RESUMO

In this paper, we describe a novel strategy for the fabrication of a nanosensor for detecting luteinizing hormone (LH) of sheep using a gold nanoparticle-peptide conjugate. A new peptide sequence "CDHPPLPDILFL" (leutinizing hormone peptide, LHP) has been identified, using BLAST and Clustal W analysis, to detect antibody of LH (sheep). LHP has been synthesized and characterized, and their affinity toward anti-LH was established using enzyme linked immunosorbant assay (ELISA) technique. The thiol group in LHP directly binds with gold nanoparticles (AuNPs) to yield AuNP-LHP construct. Detailed physicochemical analysis of AuNP-LHP construct was determined using various analytical techniques. Nanosensor using gold nanoparticle peptide conjugate was developed on the basis of competitive binding of AuNP-LHP and LH toward anti-LH. Nitrocellulose membrane, precoated with anti-LH, was soaked in the mixture of AuNP-LHP and sample of analysis (LH). In the absence of LH (sheep), anti-LH coated on the membrane binds with AuNP-LHP, leading to a distinctive red color, while in the presence of LH, no color appeared in the membrane due to the interaction of anti-LH with LH thereby preventing the binding of AuNP-LHP with membrane bound anti-LH. The sensor assay developed in this study can detect LH (sheep) up to a minimal concentration of ∼50 ppm with a high degree of reproducibility and selectivity. The gold-nanoparticle-peptide based nanosensor would be a simple, portable, effective, and low cost technique for infield applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Hormônio Luteinizante/análise , Nanopartículas Metálicas/química , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Hormônio Luteinizante/sangue , Hormônio Luteinizante/química , Oligopeptídeos/química , Propriedades de Superfície
11.
Pharm Res ; 28(2): 279-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872051

RESUMO

PURPOSE: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells. METHODS: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively. The efficacy of detecting cancerous cells was monitored using a photoacoustic technique. In vivo biodistribution was studied after IV injection of Cin-AuNPs in mice, and also a CT phantom model was generated. RESULTS: Biocompatible Cin-AuNPs were synthesized with high purity. Significant uptake of these gold nanoparticles was observed in PC-3 and MCF-7 cells. Cin-AuNPs internalized in cancerous cells facilitated detectable photoacoustic signals. In vivo biodistribution in normal mice showed steady accumulation of gold nanoparticles in lungs and rapid clearance from blood. Quantitative analysis of CT values in phantom model revealed that the cinnamon-phytochemical-coated AuNPs have reasonable attenuation efficiency. CONCLUSIONS: The results indicate that these non-toxic Cin-AuNPs can serve as excellent CT/ photoacoustic contrast-enhancement agents and may provide a novel approach toward tumor detection through nanopharmaceuticals.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Intensificação de Imagem Radiográfica/métodos , Animais , Linhagem Celular Tumoral , Cinnamomum zeylanicum/química , Meios de Contraste/química , Fibroblastos , Humanos , Camundongos , Neoplasias/patologia , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
12.
Sci Rep ; 11(1): 6558, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753813

RESUMO

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood-brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome-gut-brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.


Assuntos
Comportamento/efeitos dos fármacos , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas , Prata/efeitos adversos , Animais , Feminino , Humanos , Masculino , Aprendizagem em Labirinto , Testes de Estado Mental e Demência , Metagenoma , Metagenômica/métodos , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Prata/química
13.
J Nanosci Nanotechnol ; 10(2): 719-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352709

RESUMO

A one-step method for synthesis of bioconjugated gold nanoparticles is reported. A non-toxic and biocompatible phosphorus based reducing agent was used for reduction of gold (III) and formation of nanoparticles. Physicochemical properties of protein-A stabilized gold nanoparticls were investigated. Result of immunoassay experiments confirmed the potential of the synthesized anti-protein-A conjugated gold nanoparticles for use as a simple and inexpensive test for quantitative screening of protein-A samples.


Assuntos
Ouro , Nanopartículas Metálicas , Nanotecnologia , Proteínas/química
14.
J Biomed Nanotechnol ; 16(7): 1169-1181, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308383

RESUMO

Developing a delivery vehicle to protect siRNA from degradation is a significant challenge. To solve this challenge, researchers attempted to use protein-based nanoparticles to deliver siRNA with limited to moderate success. However, a systematic investigation of comparing the ability of different protein-based nanoparticles as vehicles to deliver siRNA stably within cells is still unavailable. Therefore, in this study we synthesized a library of both non-targeted (proteinsiRNA) nanoparticles (NPs) and targeted (antibody conjugated protein-siRNA) NPs and evaluated ability to stably deliver siRNA in to cells to silence the gene of interest. We investigated nanoparticles of casein, bovine serum albumin, and gelatin for the delivery of siRNA. We synthesized and characterized a total of 12 nanoconjugates; in these conjugates, we either encapsulated, electrostatically attached, or covalently conjugated siRNA. We evaluated the efficiency of attaching siRNA to nanoconjugates, stability, and cellular delivery. The ability of siRNA to silence the protein of interest in cancer cells was also investigated. Among non-targeted conjugates, BSA matrix imparted relatively high stability to siRNA when encapsulated. Among targeted nanoconjugates, gelatin nanoparticles rendered high stability to siRNA upon covalent conjugation to the surface. On comparing with both targeted and non-targeted NPs for release of siRNA within cells, antibody-gelatin-siRNA conjugate exhibited high release and functional activity (down-regulation of target protein levels) within the cells as confirmed by both fluorescence imaging and Western blotting. In summary, our investigations show that targeted gelatin nanoparticles and non-targeted BSA nanoparticles possess high stability and excellent gene suppression capabilities and warrants further studies. We can extend the results from this study to develop stable siRNA delivery vehicles to specifically silence the protein of interest.


Assuntos
Nanopartículas , Linhagem Celular Tumoral , Gelatina , Nanoconjugados , RNA Interferente Pequeno , Soroalbumina Bovina
15.
Am J Ophthalmol ; 213: 306-319, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035831

RESUMO

PURPOSE: We sought to assess a smartphone-based, gold nanoparticle-based colorimetric lateral flow immunoassay paper sensor for quantifying urine 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for diabetic retinopathy (DR) screening. METHODS: Paper strips incorporate gold nanoparticle-8-OHdG antibody conjugates that produce color changes that are proportional to urine 8-OHdG and that are discernible on a smartphone camera photograph. Paper strip accuracy, precision, and stability studies were performed with 8-OHdG solutions of varying concentrations. Urine was collected from 97 patients with diabetes who were receiving DR screening examinations, including 7-field fundus photographs. DR was graded by standard methods as either low risk (no or mild DR) or high risk (moderate or severe DR). Paper sensor assays were performed on urine samples from patients and 8-OHdG values were correlated with DR grades. The differences in 8-OHdG values between the low- and high-risk groups were analyzed for outliers to identify the threshold 8-OHdG value that would minimize false-negative results. RESULTS: Lateral flow immunoassay paper strips quantitatively measure 8-OHdG and were found to be accurate, precise, and stable. Average urine 8-OHdG concentrations in study patients were 22 ± 10 ng/mg of creatinine in the low-risk group and 55 ± 11 ng/mg of creatinine in the high-risk group. Screening cutoff values of 8-OHdG >50 ng/mg of creatinine or urine creatinine >1.5 mg minimized screen failures, with 91% sensitivity and 81% specificity. CONCLUSIONS: Urinary 8-OHdG is a useful biomarker to screen DR. Quantitative 8-OHdG detection with the lateral flow immunoassay paper sensor and smartphone camera demonstrates its potential in DR screening. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/urina , Biomarcadores/urina , Retinopatia Diabética/urina , Ouro/química , Imunoensaio/instrumentação , Monitorização Ambulatorial , Colorimetria , Creatinina/urina , Retinopatia Diabética/diagnóstico , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/química , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Smartphone/instrumentação
16.
ACS Omega ; 5(37): 23724-23735, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984691

RESUMO

Current methods for capturing circulating tumor cells (CTCs) are based on the overexpression of cytokeratin (CK) or epithelial cell-adhesion molecule (EpCAM) on cancer cells. However, during the process of metastasis, tumor cells undergo epithelial-to-mesenchymal transition (EMT) that can lead to the loss of CK/EpCAM expression. Therefore, it is vital to develop a capturing technique independent of CK/EpCAM expression on the cancer cell. To develop this technique, it is important to identify common secondary oncogenic markers overexpressed on tumor cells before and after EMT. We analyzed the biomarker expression levels in tumor cells, before and after EMT, and found two common proteins-human epidermal growth factor receptor 2 (Her2) and epidermal growth factor receptor (EGFR) whose levels remained unaffected. So, we synthesized immunomagnetic iron nanocubes covalently conjugated with antibodies of Her2 or EGFR to capture cancer cells irrespective of the EMT status. The nanocubes showed high specificity (6-9-fold) in isolating the cancer cells of interest from a mixture of cells spiked in serum. We characterized the captured cells for identifying their EMT status. Thus, we believe the results presented here would help in the development of novel strategies for capturing both primary and metastatic cancer cells from patients' blood to develop an effective treatment plan.

17.
RSC Adv ; 8(55): 31510-31514, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548247

RESUMO

We describe a novel synthetic strategy for conjugating HMGA2 siRNA and the HMGA aptamer to the nucleolin aptamer and nucleolin antibody, respectively. Our studies demonstrate that these conjugates inhibit cell proliferation in retinoblastoma cells.

18.
Dalton Trans ; 46(42): 14572-14583, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485418

RESUMO

A thiolated bombesin peptide was conjugated to Au-DTDTPA nanoconstructs to obtain BBN-Au-DTDTPA targeted to the gastrin releasing peptide receptor (GRPr). Different analytical techniques showed that this conjugate shares similar physico-chemical properties with Au-DTDTPA; HPLC and XPS analyses corroborated the attachment of the bioactive peptide to the AuNPs surface. Competitive binding assays in PC3 cancer cells showed that these BBN-containing AuNPs have high affinity for GRPr. BBN-Au-DTDTPA was successfully radiolabeled with 99mTc and showed high in vitro stability towards different biological media and substrates, except for glutathione (GSH). In vitro and in vivo studies, based on gamma-counting (99mTc content) and neutron activation analysis (Au content), indicated the release of the DTDTPA coating from the AuNPs. Probably, the "peeling" of the layered-aminocarboxylate coating is GSH-mediated and involves the cleavage of the DTDTPA disulfide bonds and/or Au-S bonds. These results render BBN-Au-DTDTPA an interesting platform deserving further evaluation in target-specific GSH-mediated drug delivery.

19.
Sci Rep ; 7(1): 2822, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588204

RESUMO

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Aggregatibacter/efeitos dos fármacos , Animais , Bacteroides/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Clostridium/efeitos dos fármacos , Corynebacterium/efeitos dos fármacos , Disbiose/induzido quimicamente , Disbiose/fisiopatologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiopatologia , Humanos , Nanopartículas Metálicas/administração & dosagem , Peptococcus/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Sci Rep ; 6: 30245, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530552

RESUMO

A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.


Assuntos
Antineoplásicos/farmacologia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab/química , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Gefitinibe , Gelatina/química , Humanos , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA