Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 14(9): 5128-32, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25078791

RESUMO

The electronic properties of graphene edges have been predicted to depend on their crystallographic orientation. The so-called zigzag (ZZ) edges haven been extensively explored theoretically and proposed for various electronic applications. However, their experimental study remains challenging due to the difficulty in realizing clean ZZ edges without disorder, reconstructions, or the presence of chemical functional groups. Here, we propose the ZZ-terminated, atomically sharp interfaces between graphene and hexagonal boron nitride (BN) as experimentally realizable, chemically stable model systems for graphene ZZ edges. Combining scanning tunneling microscopy and numerical methods, we explore the structure of graphene-BN interfaces and show them to host localized electronic states similar to those on the pristine graphene ZZ edge.

2.
Sci Rep ; 13(1): 21379, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049489

RESUMO

African desert dust is emitted and long-range transported with multiple effects on climate, air quality, cryosphere, and ecosystems. On 21-23 February 2021, dust from a sand and dust storm in northern Africa was transported to Finland, north of 60°N. The episode was predicted 5 days in advance by the global operational SILAM forecast, and its key features were confirmed and detailed by a retrospective analysis. The scavenging of dust by snowfall and freezing rain in Finland resulted in a rare case of substantial mineral dust contamination of snow surfaces over a large area in the southern part of the country. A citizen science campaign was set up to collect contaminated snow samples prepared according to the scientists' instructions. The campaign gained wide national interest in television, radio, newspapers and social media, and dust samples were received from 525 locations in Finland, up to 64.3°N. The samples were utilised in investigating the ability of an atmospheric dispersion model to simulate the dust episode. The analysis confirmed that dust came from a wide Sahara and Sahel area from 5000 km away. Our results reveal the features of this rare event and demonstrate how deposition samples can be used to evaluate the skills and limitations of current atmospheric models in simulating transport of African dust towards northern Europe.

3.
Phys Rev Lett ; 107(23): 236803, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182115

RESUMO

Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum-confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition on an Ir(111) substrate by low-temperature scanning tunneling microscopy and spectroscopy. We measure the atomic structure and local density of states of individual GQDs as a function of their size and shape in the range from a couple of nanometers up to ca. 20 nm. The results can be quantitatively modeled by a relativistic wave equation and atomistic tight-binding calculations. The observed states are analogous to the solutions of the textbook "particle-in-a-box" problem applied to relativistic massless fermions.

4.
Nat Commun ; 4: 2023, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756598

RESUMO

Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA