Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 98(3): e0004224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376198

RESUMO

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.


Assuntos
Deltainfluenzavirus , Ácidos Neuramínicos , Receptores Virais , Animais , Bovinos , Membrana Celular/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Orthomyxoviridae/metabolismo , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo
2.
J Med Virol ; 95(7): e28901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394780

RESUMO

The DiversitabTM system produces target specific high titer fully human polyclonal IgG immunoglobulins from transchromosomic (Tc) bovines shown to be safe and effective against multiple virulent pathogens in animal studies and Phase 1, 2 and 3 human clinical trials. We describe the functional properties of a human monoclonal antibody (mAb), 38C2, identified from this platform, which recognizes recombinant H1 hemagglutinins (HAs) and induces appreciable antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Interestingly, 38C2 monoclonal antibody demonstrated no detectable neutralizing activity against H1N1 virus in both hemagglutination inhibition and virus neutralization assays. Nevertheless, this human monoclonal antibody induced appreciable ADCC against cells infected with multiple H1N1 strains. The HA-binding activity of 38C2 was also demonstrated in flow cytometry using Madin-Darby canine kidney cells infected with multiple influenza A H1N1 viruses. Through further investigation with the enzyme-linked immunosorbent assay involving the HA peptide array and 3-dimensional structural modeling, we demonstrated that 38C2 appears to target a conserved epitope located at the HA1 protomer interface of H1N1 influenza viruses. A novel mode of HA-binding and in vitro ADCC activity pave the way for further evaluation of 38C2 as a potential therapeutic agent to treat influenza virus infections in humans.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Animais , Cães , Bovinos , Epitopos , Anticorpos Monoclonais , Subunidades Proteicas , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunoglobulina G , Citotoxicidade Celular Dependente de Anticorpos
3.
Arch Virol ; 166(9): 2369-2386, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216267

RESUMO

Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.


Assuntos
Genética Reversa , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/genética , Rotavirus/genética , Animais , Pré-Escolar , Análise Custo-Benefício , Diarreia/prevenção & controle , Diarreia/virologia , Interações Hospedeiro-Patógeno , Humanos , Plasmídeos , RNA Viral/genética , Vacinas contra Rotavirus/economia , Proteínas Virais/genética
4.
Virology ; 587: 109859, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544044

RESUMO

Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Vírus , Bovinos , Animais , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Prevalência , Complexo Respiratório Bovino/epidemiologia , Doenças dos Bovinos/epidemiologia
5.
Viruses ; 14(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35458390

RESUMO

Antibodies to influenza D virus (IDV) have been detected in horses, but no evidence of disease in the field has been reported. To determine whether IDV is infectious, immunogenic, and pathogenic in horses, four 2-year-old horses seronegative for both influenza A (H3N8) and D viruses were intranasally inoculated with 6.25 × 107 TCID50/animal of D/bovine/California/0363/2019 (D/CA2019) virus, using a portable equine nebulizer system. Horses were observed daily for clinical signs including rectal temperature, nasal discharge, coughing, lung sounds, tachycardia, and tachypnea. No horses exhibited clinical signs of disease. Nasopharyngeal swabs collected from 1-8 days post-infection demonstrated virus shedding by qRT-PCR. The horses showed evidence of seroconversion as early as 13 days post-infection (dpi) and the geometric mean of the antibody titers (GMT) of all four horses ranged from 16.82-160 as demonstrated by the microneutralization assay. Further, deep RNA sequencing of the virus isolated in embryonated chicken eggs revealed no adaptive mutations indicating that IDV can replicate in horses, suggesting the possibility of interspecies transmission of IDV with bovine reservoir into equids in nature.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Anticorpos Antivirais , Bovinos , Cavalos
6.
Virology ; 559: 89-99, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862336

RESUMO

Influenza D virus (IDV) is a novel type of influenza virus that infects and causes respiratory illness in bovines. Lack of host-specific in vitro model that can recapitulate morphology and physiology of in vivo airway epithelial cells has impeded the study of IDV infection. Here, we established and characterized bovine primary respiratory epithelial cells from nasal turbinate, soft palate, and trachea of the same calf. All three cell types showed characteristics peculiar of epithelial cells, polarized into apical-basolateral membrane, and formed tight junctions. Furthermore, these cells expressed both α-2,3- and α-2,6-linked sialic acids with α-2,3 linkage being more abundant. IDV strains replicated to high titers in these cells, while influenza A and B viruses exhibited moderate to low titers, with influenza C virus replication not detected. These findings suggest that bovine primary airway epithelial cells can be utilized to model infection biology and pathophysiology of IDV and other respiratory pathogens.


Assuntos
Células Epiteliais/virologia , Sistema Respiratório/citologia , Thogotovirus/fisiologia , Replicação Viral , Animais , Bovinos , Contagem de Células , Células Cultivadas , Palato Mole/citologia , Palato Mole/virologia , Sistema Respiratório/virologia , Traqueia/citologia , Traqueia/virologia , Conchas Nasais/citologia , Conchas Nasais/virologia , Virologia/métodos
7.
Emerg Microbes Infect ; 10(1): 739-742, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33771071

RESUMO

Influenza D virus (IDV), with bovines as a primary host, circulates widely in cattle populations across North America and Eurasia. Here we report the identification of a novel IDV group with broad antigenicity in U.S. bovine herds, which is genetically different from previously known lineages of IDV.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Thogotovirus/classificação , Thogotovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Thogotovirus/genética , Thogotovirus/isolamento & purificação , Estados Unidos
8.
Vet Immunol Immunopathol ; 234: 110220, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713903

RESUMO

Chronic lesions in the limbs of farm animals cause lameness due to chronic infection and inflammation. Exploratory treatments for chronic wounds in humans may be suitable for adaptation into the field of animal care. Specifically, antimicrobial linear polysaccharides like oxidized regenerated cellulose (ORC) and chitin/chitosan are biodegradable hemostats that are being explored to promote healing of chronic wounds but have not been directly compared using the same biological specimen. Despite their current use in humans, linear polysaccharides possess features that may preclude their use as biodegradable bandages. For example, ORC promotes inflammation when it remains in vivo and chitin/chitosan stimulate size-dependent proinflammatory responses. In order to assess the use of these materials to treat chronic wounds we have compared their effects on cellular toxicity and in stimulating the production of proinflammatory cytokines by bovine epidermal fibroblasts. While neither polysaccharide increased cell mortality, on average, they caused minor alterations in expression of proinflammatory cytokines from cells isolated from different animals. Both polysaccharides reduced expression of proinflammatory cytokines stimulated by microbial lipopolysaccharide. We conclude that the polysaccharides used in this study are relatively inert and may improve healing of chronic epidermal wounds in farm animals.


Assuntos
Citocinas/genética , Citocinas/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Polissacarídeos/farmacologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Celulose Oxidada/farmacologia , Quitina/farmacologia , Polissacarídeos/classificação , Pele/citologia , Cicatrização
9.
Comp Immunol Microbiol Infect Dis ; 74: 101581, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33260019

RESUMO

In this study, primary and immortalized bovine intestinal epithelial cells (BIECs) were characterized for the expression of surface carbohydrate moieties. Primary BIEC-c4 cells showed staining greater than 90 % for 16 lectins but less than 50 % staining for four lectins. Immortalized BIECs showed significantly different lectin binding profile for few lectins compared to BIEC-c4 cells. BIEC-c4 cells were studied for infectivity to E. coli, Salmonella enterica, bovine rotavirus, bovine coronavirus, and bovine viral diarrhea virus. Bovine strain E. coli B41 adhered to BIEC-c4 cells and Salmonella strains S. Dublin and S. Mbandaka showed strong cell invasion. BIEC-c4 cells were susceptible to bovine rotavirus. LPS stimulation upregulated IL-10, IL-8, and IL-6 expression and Poly I:C upregulated TLR 8 and TLR 9 expression. This study provides important knowledge on the glycoconjugate expression profile of primary and immortalized BIECs and infectivity and immune responses of primary BIECs to bacterial and viral pathogens or ligands.


Assuntos
Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Lectinas/metabolismo , Receptores Toll-Like/imunologia , Animais , Bovinos , Coronavirus Bovino , Vírus da Diarreia Viral Bovina , Escherichia coli , Imunidade , Interleucinas/imunologia , Rotavirus , Salmonella enterica
10.
Viruses ; 13(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372536

RESUMO

Equine rotavirus group A (ERVA) is one of the most common causes of foal diarrhea. Starting in February 2021, there was an increase in the frequency of severe watery to hemorrhagic diarrhea cases in neonatal foals in Central Kentucky. Diagnostic investigation of fecal samples failed to detect evidence of diarrhea-causing pathogens including ERVA. Based on Illumina-based metagenomic sequencing, we identified a novel equine rotavirus group B (ERVB) in fecal specimens from the affected foals in the absence of any other known enteric pathogens. Interestingly, the protein sequence of all 11 segments had greater than 96% identity with group B rotaviruses previously found in ruminants. Furthermore, phylogenetic analysis demonstrated clustering of the ERVB with group B rotaviruses of caprine and bovine strains from the USA. Subsequent analysis of 33 foal diarrheic samples by RT-qPCR identified 23 rotavirus B-positive cases (69.69%). These observations suggest that the ERVB originated from ruminants and was associated with outbreaks of neonatal foal diarrhea in the 2021 foaling season in Kentucky. Emergence of the ruminant-like group B rotavirus in foals clearly warrants further investigation due to the significant impact of the disease in neonatal foals and its economic impact on the equine industry.


Assuntos
Doenças dos Cavalos/virologia , Cavalos/virologia , Rotavirus/patogenicidade , Animais , Proteínas do Capsídeo/genética , Diarreia/etiologia , Diarreia/virologia , Surtos de Doenças/veterinária , Fezes/virologia , Kentucky , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Rotavirus/classificação , Infecções por Rotavirus/veterinária
11.
NPJ Vaccines ; 6(1): 22, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526776

RESUMO

Immunization with an insect cell lysate/baculovirus mixture containing recombinant porcine epidemic diarrhea virus (PEDV) spike protein induced high levels of neutralizing antibodies in both mice and piglets. However, immunization of piglets with this vaccine resulted in enhancement of disease symptoms and virus replication in vaccine recipients exposed to PEDV challenge. Thus, these observations demonstrate a previously unrecognized challenge of PEDV vaccine research, which has important implications for coronavirus vaccine development.

12.
Cytotechnology ; 71(1): 127-148, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30600465

RESUMO

The intestinal epithelium is a major site of interaction with pathogens. In bovine intestinal epithelial cells (BIECs), Toll-like receptors (TLRs) play an important role in innate immune responses against enteric pathogens. This study is aimed at establishing a stable bovine intestinal epithelial cell line that can be maintained by a continuous passage so that studies on innate immune responses against various enteric pathogens can be performed. The main goal was to establish pure cultures of primary and immortalized bovine intestinal epithelial cells from the ileum and then characterize them biochemically and immunologically. Mixed epithelial and fibroblast bovine ileal intestinal cultures were first established from a 2-day old calf. Limiting dilution method was used to obtain a clone of epithelial cells which was characterized using immunocytochemistry (ICC). The selected clone BIEC-c4 was cytokeratin positive and expressed low levels of vimentin, confirming the epithelial cell phenotype. Early passage BIEC-c4 cells were transfected with either simian virus 40 (SV40) large T antigen or human telomerase reverse transcriptase (hTERT), or human papillomavirus (HPV) type 16E6/E7 genes to establish three immortalized BIEC cell lines. The expression of SV40, hTERT and HPV E6/E7 genes in immortalized BIECs was confirmed by a polymerase chain reaction (PCR). Immunocytochemistry and immunofluorescence assays also confirmed the expression of SV40, hTERT and HPV E6 proteins. The immortalized BIECs were cytokeratin positive and all except HPV-BIECs expressed low levels of vimentin. A growth kinetics study indicated that there were no significant differences in the doubling time of immortalized BIECs as compared to early passage BIEC-c4 cells. All four BIEC types expressed TLR 1-10 genes, with TLR 3 and 4 showing higher expression across all cell types. These newly established early passage and immortalized BIEC cell lines should serve as a good model for studying infectivity, pathogenesis and innate immune responses against enteric pathogens.

13.
In Vitro Cell Dev Biol Anim ; 55(7): 533-547, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183683

RESUMO

Intestinal sub-epithelial myofibroblasts (ISEMFs) are mesenchymal cells that do not express cytokeratin but express α-smooth muscle actin and vimentin. Despite being cells with diverse functions, there is a paucity of knowledge about their origin and functions primarily due to the absence of a stable cell line. Although myofibroblast in vitro models for human, mouse, and pig are available, there is no ISEMF cell line available from young calves. We isolated and developed an ileal ISEMF cell line from a 2-d-old calf that expressed α-smooth muscle actin and vimentin but no cytokeratin indicating true myofibroblast cells. To overcome replicative senescence, we immortalized primary cells with SV40 large T antigen. We characterized and compared both primary and immortalized ileal ISEMF cells for surface glycan and Toll-like-receptor (TLR) expression by lectin-binding assay and real-time quantitative PCR (RT-qPCR) assay respectively. SV40 immortalization significantly decreased surface lectin binding for lectins GSL-I, PHA-L, ECL, Jacalin, Con-A, LCA, and LEL. Both cell types expressed TLRs 1-9 and showed no significant differences in TLR expression. Thus, these cells can be useful in vitro model to study ISEMF's origin, physiology, and functions.


Assuntos
Técnicas de Cultura de Células/métodos , Íleo/citologia , Mucosa Intestinal/citologia , Miofibroblastos/citologia , Actinas/biossíntese , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Virais de Tumores/genética , Bovinos , Linhagem Celular Transformada , Queratinas/biossíntese , Receptores Toll-Like/biossíntese , Vimentina/biossíntese
14.
Viruses ; 10(6)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880757

RESUMO

Influenza viruses infect the epithelial cells of the swine respiratory tract. Cell lines derived from the respiratory tract of pigs could serve as an excellent in vitro model for studying the pathogenesis of influenza viruses. In this study, we examined the replication of influenza viruses in the MK1-OSU cell line, which was clonally derived from pig airway epithelium. MK1-OSU cells expressed both cytokeratin and vimentin proteins and displayed several sugar moieties on the cell membrane. These cells also expressed both Sial2-3Gal and Sial2-6Gal receptors and were susceptible to swine influenza A, but not to human B and C viruses. Interestingly, these cells were also permissive to infection by influenza D virus that utilized 9-O-acetylated glycans. To study the differences in the expression of pattern recognition receptors (PRRs) upon influenza virus infection in the respiratory and digestive tract, we compared the protein expression of various PRRs in MK1-OSU cells with that in the SD-PJEC cell line, a clonally derived cell line from the porcine jejunal epithelium. Toll-like receptor 7 (TLR-7) and melanoma differentiation-associated protein 5 (MDA5) receptors showed decreased expression in influenza A infected MK1-OSU cells, while only TLR-7 expression decreased in SD-PJEC cells. Further research is warranted to study the mechanism behind the virus-mediated suppression of these proteins. Overall, this study shows that the porcine respiratory epithelial cell line, MK1-OSU, could serve as an in-vitro model for studying the pathogenesis and innate immune responses to porcine influenza viruses.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Receptores de Reconhecimento de Padrão/análise , Animais , Linhagem Celular , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA