Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946403

RESUMO

Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.


Assuntos
Técnicas de Cultura de Células/métodos , Vesículas Extracelulares/patologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Humanos , Alicerces Teciduais/química
2.
Differentiation ; 95: 54-62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28511052

RESUMO

Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM ß-glycerophosphate (ßGP), or ITS+/10mM ßGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA <10ng/µg), moderate (Pi/DNA=25.3 - 32.3ng/µg), and high abundance (Pi/DNA >60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM ßGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/ßGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of exogenous cues on chondrogenic differentiation, chondrocyte maturation, and matrix mineralization.


Assuntos
Condrócitos/efeitos dos fármacos , Condrogênese , Fosfatos/farmacologia , Agrecanas/genética , Agrecanas/metabolismo , Animais , Linhagem Celular Tumoral , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Camundongos , Regulação para Cima
3.
ACS Appl Mater Interfaces ; 16(24): 30860-30873, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860682

RESUMO

The incidence of breast cancer remains high worldwide and is associated with a significant risk of metastasis to the brain that can be fatal; this is due, in part, to the inability of therapeutics to cross the blood-brain barrier (BBB). Extracellular vesicles (EVs) have been found to cross the BBB and further have been used to deliver drugs to tumors. EVs from different cell types appear to have different patterns of accumulation and retention as well as the efficiency of bioactive cargo delivery to recipient cells in the body. Engineering EVs as delivery tools to treat brain metastases, therefore, will require an understanding of the timing of EV accumulation and their localization relative to metastatic sites. Magnetic particle imaging (MPI) is a sensitive and quantitative imaging method that directly detects superparamagnetic iron. Here, we demonstrate MPI as a novel tool to characterize EV biodistribution in metastatic disease after labeling EVs with superparamagnetic iron oxide (SPIO) nanoparticles. Iron-labeled EVs (FeEVs) were collected from iron-labeled parental primary 4T1 tumor cells and brain-seeking 4T1BR5 cells, followed by injection into the mice with orthotopic tumors or brain metastases. MPI quantification revealed that FeEVs were retained for longer in orthotopic mammary carcinomas compared to SPIOs. MPI signal due to iron could only be detected in brains of mice bearing brain metastases after injection of FeEVs, but not SPIOs, or FeEVs when mice did not have brain metastases. These findings indicate the potential use of EVs as a therapeutic delivery tool in primary and metastatic tumors.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Camundongos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Linhagem Celular Tumoral , Ferro/química , Ferro/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Humanos
4.
Bioact Mater ; 40: 64-73, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38948254

RESUMO

Composite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described. PLA degradation products have been shown to alter immune cell metabolism (immunometabolism), which drives the inflammatory response. Accordingly, to modulate the inflammatory response to composite biomaterials, inhibitors were incorporated into composites comprised of amorphous PLA (aPLA) and HA (aPLA + HA) to regulate glycolytic flux. Inhibition at specific steps in glycolysis reduced proinflammatory (CD86+CD206-) and increased pro-regenerative (CD206+) immune cell populations around implanted aPLA + HA. Notably, neutrophil and dendritic cell (DC) numbers along with proinflammatory monocyte and macrophage populations were decreased, and Arginase 1 expression among DCs was increased. Targeting immunometabolism to control the proinflammatory response to biomaterial composites, thereby creating a pro-regenerative microenvironment, is a significant advance in tissue engineering where immunomodulation enhances osseointegration and angiogenesis, which could lead to improved bone regeneration.

5.
ACS Biomater Sci Eng ; 9(2): 932-943, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634351

RESUMO

Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1ß, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.


Assuntos
Materiais Biocompatíveis , Poliésteres , Poliésteres/farmacologia , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Próteses e Implantes , Citocinas
6.
Commun Biol ; 6(1): 1134, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945749

RESUMO

The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lies at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region, with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Neoplasias Bucais/patologia , Complexo II de Transporte de Elétrons/metabolismo
7.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577521

RESUMO

The molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lie at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination. Autofluorescence from a 70 kDa flavoprotein, succinate dehydrogenase A (SDHA), was found to be responsible for changes in optical properties within the FAD spectral region with lower levels of flavinated SDHA in OSCC cells. Since flavinated SDHA is required for functional complexation with succinate dehydrogenase B (SDHB), decreased SDHB levels were observed in human OSCC tissue relative to normal tissues. Accordingly, the metabolism of OSCC cells was found to be significantly altered relative to normal cells, revealing vulnerabilities for both diagnosis and targeted therapy. Optimizing non-invasive tools based on optical and metabolic signatures of cancers will enable more precise and early diagnosis leading to improved outcomes in patients.

8.
Adv Sci (Weinh) ; 10(31): e2304632, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737614

RESUMO

Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses. Using a bioenergetic model, delayed cellular changes were observed that are not apparent in the short-term. Amorphous and semi-crystalline PLA degradation products, including monomeric l-lactic acid, mechanistically remodel metabolism in cells leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines. Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable high cytokine levels and stimulate anti-inflammatory signals. The results present a new biocompatibility paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials, ensuring safe clinical application of PLA-based implants for soft- and hard-tissue regeneration, and advancing nanomedicine and drug delivery.


Assuntos
Inflamação , Poliésteres , Humanos , Poliésteres/química , Inflamação/metabolismo , Materiais Biocompatíveis , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA