Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 33(4): 4921-4935, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30596521

RESUMO

Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet-induced obesity. C57BL/6 mice were fed a high-fat high-sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracasei/casei; Lb102, L. rhamnosus) or Bifidobacterium strains (Bf26, Bf141, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony-forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lb102 and Bf141 reduced diet-induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lb102 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.-Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers-Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St-Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity.


Assuntos
Bifidobacterium animalis/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Obesidade/dietoterapia , Obesidade/microbiologia , Probióticos/uso terapêutico , Tecido Adiposo/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , RNA Ribossômico 16S/genética
2.
Cell Microbiol ; 20(11): e12871, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920917

RESUMO

Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lacticaseibacillus rhamnosus , Fator 88 de Diferenciação Mieloide/metabolismo , Probióticos/farmacologia , Administração Oral , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Células CACO-2 , Colo/citologia , Colo/microbiologia , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Miofibroblastos/metabolismo , Miofibroblastos/microbiologia , Probióticos/administração & dosagem
3.
Regul Toxicol Pharmacol ; 83: 54-65, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27825987

RESUMO

Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 109 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs.


Assuntos
Bacillus subtilis/fisiologia , Inocuidade dos Alimentos , Probióticos/toxicidade , Idoso , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/patogenicidade , Qualidade de Produtos para o Consumidor , Impressões Digitais de DNA , DNA Girase/genética , DNA Bacteriano/genética , Método Duplo-Cego , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Feminino , Hemólise , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ribotipagem , Medição de Risco , Fatores de Tempo
4.
Antimicrob Agents Chemother ; 60(6): 3445-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001810

RESUMO

Although the use of probiotics based on Bacillus strains to fight off intestinal pathogens and antibiotic-associated diarrhea is widespread, the mechanisms involved in producing their beneficial effects remain unclear. Here, we studied the ability of compounds secreted by the probiotic Bacillus clausii strain O/C to counteract the cytotoxic effects induced by toxins of two pathogens, Clostridium difficile and Bacillus cereus, by evaluating eukaryotic cell viability and expression of selected genes. Coincubation of C. difficile and B. cereus toxic culture supernatants with the B. clausii supernatant completely prevented the damage induced by toxins in Vero and Caco-2 cells. The hemolytic effect of B. cereus was also avoided by the probiotic supernatant. Moreover, in these cells, the expression of rhoB, encoding a Rho GTPase target for C. difficile toxins, was normalized when C. difficile supernatant was pretreated using the B. clausii supernatant. All of the beneficial effects observed with the probiotic were abolished by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF). Suspecting the involvement of a secreted protease in this protective effect, a protease was purified from the B. clausii supernatant and identified as a serine protease (M-protease; GenBank accession number Q99405). Experiments on Vero cells demonstrated the antitoxic activity of the purified protease against pathogen supernatants. This is the first report showing the capacity of a protease secreted by probiotic bacteria to inhibit the cytotoxic effects of toxinogenic C. difficile and B. cereus strains. This extracellular compound could be responsible, at least in part, for the protective effects observed for this human probiotic in antibiotic-associated diarrhea.


Assuntos
Bacillus cereus/patogenicidade , Bacillus clausii/metabolismo , Toxinas Bacterianas/toxicidade , Clostridioides difficile/patogenicidade , Probióticos/farmacologia , Subtilisinas/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Meios de Cultivo Condicionados/farmacologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fluoreto de Fenilmetilsulfonil/farmacologia , Inibidores de Proteases/farmacologia , Subtilisinas/antagonistas & inibidores , Células Vero , Proteína rhoB de Ligação ao GTP/metabolismo
5.
Microbiology (Reading) ; 161(Pt 4): 708-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25635270

RESUMO

The vaginal microbiota of healthy, fertile women is dominated by lactobacilli. As a defence mechanism, these bacteria produce H2O2 to discourage colonization of the vagina by undesirable micro-organisms. In particular, Lactobacillus jensenii CECT 4306 is a strong producer of H2O2 and has been found to protect itself from the bactericidal effects of this compound through the activity of extracellular peroxidases. However, this peroxidase activity is dependent on the presence of Fe(3+), which is found in elevated concentrations in the vaginal mucosa as a consequence of the menstrual discharge. The aim of the present work was to evaluate whether Fe(3+) is able to modulate other potential probiotic properties of strain 4306. We found that Fe(3+) enhances the adhesion of L. jensenii CECT 4306 to mucin and to HT-29 and HT-29 MTX cells, and, in addition, improves the anti-inflammatory profile, as judged by an increase in the ratio of IL-10/IL-12p70 that were secreted by macrophages. A comparison of total, secreted and surface proteins produced in the presence and absence of Fe(3+) revealed significant differences in the concentration of the moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, Fe(3+) seems to improve the probiotic characteristics of L. jensenii CECT 4306, and future research of the interactions of this strain with its vaginal environment may reveal further information about different aspects of its probiotic potential.


Assuntos
Ferro/metabolismo , Lactobacillus/metabolismo , Probióticos , Vagina/microbiologia , Aderência Bacteriana , Proteínas de Bactérias , Linhagem Celular , Feminino , Compostos Férricos/metabolismo , Humanos , Imunomodulação , Microbiota , Mucosa/imunologia , Mucosa/microbiologia , Proteoma , Proteômica , Vagina/imunologia
6.
Immun Ageing ; 12: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640504

RESUMO

BACKGROUND: Bacillus probiotics health benefits have been until now quite poorly studied in the elderly population. This study aimed to assess the effects of Bacillus subtilis CU1 consumption on immune stimulation and resistance to common infectious disease (CID) episodes in healthy free-living seniors. RESULTS: One hundred subjects aged 60-74 were included in this randomized, double-blind, placebo-controlled, parallel-arms study. Subjects consumed either the placebo or the probiotic (2.10(9) B. subtilis CU1 spores daily) by short periodical courses of 10 days intermittently, alternating 18-day course of break. This scheme was repeated 4 times during the study. Symptoms of gastrointestinal and upper/lower respiratory tract infections were recorded daily by the subjects throughout the study (4 months). Blood, saliva and stool samples were collected in a predefined subset of the first forty-four subjects enrolled in the study. B. subtilis CU1 supplementation did not statistically significantly decrease the mean number of days of reported CID symptoms over the 4-month of study (probiotic group: 5.1 (7.0) d, placebo group: 6.6 (7.3) d, P = 0.2015). However, in the subset of forty-four randomized subjects providing biological samples, we showed that consumption of B. subtilis CU1 significantly increased fecal and salivary secretory IgA concentrations compared to the placebo. A post-hoc analysis on this subset showed a decreased frequency of respiratory infections in the probiotc group compared to the placebo group. CONCLUSION: Taken together, our study provides evidence that B. subtilis CU1 supplementation during the winter period may be a safe effective way to stimulate immune responses in elderly subjects.

7.
Antonie Van Leeuwenhoek ; 106(4): 693-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090957

RESUMO

Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.


Assuntos
Alanina/análise , Alanina/imunologia , Bacillus/química , Lipopolissacarídeos/análise , Lipopolissacarídeos/imunologia , Probióticos/química , Ácidos Teicoicos/análise , Ácidos Teicoicos/imunologia , Animais , Bacillus/imunologia , Linhagem Celular , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Fatores Imunológicos/análise , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade , Ácidos Teicoicos/química
8.
J Dairy Res ; 81(1): 16-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24168928

RESUMO

We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.


Assuntos
Aderência Bacteriana , Mucosa Gástrica/microbiologia , Mucosa Intestinal/microbiologia , Lactobacillus/fisiologia , Muco/microbiologia , Probióticos , Animais , Aderência Bacteriana/efeitos dos fármacos , Colo , Produtos Fermentados do Leite/microbiologia , Hexoses/farmacologia , Intestino Delgado , Proteínas de Membrana/farmacologia , Suínos
9.
Microorganisms ; 12(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39203422

RESUMO

As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.

10.
Curr Microbiol ; 64(6): 592-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22461079

RESUMO

The aim of this study was to study the interference of the extracellular proteins produced by Lactobacillus plantarum BMCM12 with the adhesion of some well-known gut pathogens. The extracellular proteins secreted by L. plantarum BMCM12 in MRS broth were precipitated, resolved by SDS-PAGE, and identified by tandem mass spectrometry. Discordances between the observed and the theoretical molecular masses of several proteins suggested the presence of protein glycosylation, corroborated with specific glycoprotein staining after protein de-glycosylation using trifluoromethanesulfonic acid. Experiments of exclusion, competition, or prevention of the pathogen adhesion to mucin were performed using BMCM12 extracellular proteins, using Escherichia coli LMG2092 and Salmonella enterica subsp. enterica LMG15860. Extracellular proteins from BMCM12 reduced significantly the adhesion of the pathogens when they were added prior to adhesion assays. These proteins play thus important roles in preventing pathogen adhesion to the mucin layer.


Assuntos
Antibiose , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Lactobacillus plantarum/fisiologia , Mucinas/metabolismo , Salmonella enterica/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Lactobacillus plantarum/metabolismo , Peso Molecular , Espectrometria de Massas em Tandem
11.
Gut Pathog ; 14(1): 30, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794638

RESUMO

BACKGROUND: Obesity is a worldwide health problem and a significant risk factor for diabetes and cardiovascular diseases. Gut microbiota (GM) plays an essential role in obesity, and prebiotics such as polyphenols could be one way to improve microbial dysbiosis-induced obesity. OBJECTIVE: This study was designed to assess the effectiveness of grape seed and skin extract (GSSE), and/or orlistat on obese rats fed with high fat diet by targeting GM modulations. The impact of treatments was also studied in non-obese rats. MATERIAL AND METHODS: Rats were rendered obese or kept with a standard diet for three months. Then they were treated either with GSSE or orlistat or with the combined treatment (GSOR) during three months and then sacrificed. Adipose tissues, blood and faeces were collected and analyzed. RESULTS: In obese rats and to a lesser extent in non-obese rats, treatments decreased the weight of various adipose tissues and the serum levels of cholesterol, LDL, triglycerides, lipase, and CRP and increased HDL and adiponectin. GSOR treatment was even more efficient that orlistat. Obese rats had less GM diversity than non-obese rats and orlistat reduced it even more. However, diversity was restored with GSSE and GSOR treatments. Potential pathogenic Streptococcus alactolyticus/gallolyticus species were greatly increased in obese rats and drastically reduced with the treatments, as wells as other potential pathobionts. CONCLUSIONS: GSSE exerts beneficial effects in obese rats and restores, at least partially, the observed dysbiosis. GSOR induced the highest beneficial effect. Moreover, the various treatments could also enhance physiological and GM modifications in non obese rats.

12.
Appl Environ Microbiol ; 77(3): 1123-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131525

RESUMO

In the present work, we describe the adhesion capabilities of a recombinant Lactococcus lactis strain producing an extracellular protein from Lactobacillus plantarum. Our results show that this protein may offer the bacterium a mechanism to bind to N-acetylglucosamine-containing polymers, such as human mucins, present in different environments.


Assuntos
Adesinas Bacterianas/metabolismo , Células CACO-2/metabolismo , Quitina/metabolismo , Lactobacillus plantarum/metabolismo , Mucinas/metabolismo , Ligação Proteica , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/fisiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Mol Nutr Food Res ; 65(9): e2001068, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742729

RESUMO

SCOPE: Synthetic emulsifiers have recently been shown to promote metabolic syndrome and considerably alter gut microbiota. Yet, data are lacking regarding the effects of natural emulsifiers, such as plant lecithins rich in essential α-linolenic acid (ALA), on gut and metabolic health. METHODS AND RESULTS: For 5 days, male Swiss mice are fed diets containing similar amounts of ALA and 0, 1, 3, or 10% rapeseed lecithin (RL) or 10% soy lecithin (SL). Following an overnight fast, they are force-fed the same oil mixture and euthanized after 90 minutes. The consumption of lecithin significantly increased fecal levels of the Clostridium leptum group (p = 0.0004), regardless of origin or dose, without altering hepatic or intestinal expression of genes of lipid metabolism. 10%-RL increased ALA abundance in plasma triacylglycerols at 90 minutes, reduced cecal bile acid hydrophobicity, and increased their sulfatation, as demonstrated by the increased hepatic RNA expression of Sult2a1 (p = 0.037) and cecal cholic acid-7 sulfate (CA-7S) concentration (p = 0.05) versus 0%-lecithin. CONCLUSION: After only 5 days, nutritional doses of RL and SL modified gut bacteria in mice, by specifically increasing C. leptum group. RL also increased postprandial ALA abundance and induced beneficial modifications of the bile acid profile. ALA-rich lecithins, especially RL, may then appear as promising natural emulsifiers.


Assuntos
Ácidos e Sais Biliares/análise , Brassica napus , Microbioma Gastrointestinal/efeitos dos fármacos , Glycine max , Lecitinas/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Período Pós-Prandial/fisiologia , Ácido alfa-Linolênico/administração & dosagem
14.
Microbiology (Reading) ; 156(Pt 11): 3232-3242, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20864471

RESUMO

During the last few years, a substantial body of scientific evidence has accumulated suggesting that certain surface-associated and extracellular components produced by probiotic bacteria could be responsible for some of their mechanisms of action. These bacterial components would be able to directly interact with the host mucosal cells; they include exopolysaccharides, bacteriocins, lipoteichoic acids and surface-associated and extracellular proteins. Extracellular proteins include proteins that are actively transported to the bacterial surroundings through the cytoplasmic membrane, as well as those that are simply shed from the bacterial surface. Compared to the other bacterial components, the interactive ability of extracellular proteins/peptides has been less extensively studied. In this review, current findings supporting an interaction between extracellular proteins/peptides produced by probiotic bacteria (strains of the genera Bifidobacterium, Lactobacillus and Escherichia) and host mucosal cells are discussed. Research needs and future trends are also considered.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Probióticos , Flagelina/metabolismo , Homeostase , Humanos , Imunomodulação , Receptores de Superfície Celular/metabolismo
15.
Mar Drugs ; 8(8): 2240-51, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20948906

RESUMO

We have studied the exopolysaccharide produced by the type strain of Salipiger mucosus, a species of halophilic, EPS-producing (exopolysaccharide-producing) bacterium belonging to the Alphaproteobacteria. The strain, isolated on the Mediterranean seaboard, produced a polysaccharide, mainly during its exponential growth phase but also to a lesser extent during the stationary phase. Culture parameters influenced bacterial growth and EPS production. Yield was always directly related to the quantity of biomass in the culture. The polymer is a heteropolysaccharide with a molecular mass of 250 kDa and its components are glucose (19.7%, w/w), mannose (34%, w/w), galactose (32.9%, w/w) and fucose (13.4%, w/w). Fucose and fucose-rich oligosaccharides have applications in the fields of medicine and cosmetics. The chemical or enzymatic hydrolysis of fucose-rich polysaccharides offers a new efficient way to process fucose. The exopolysaccharide in question produces a solution of very low viscosity that shows pseudoplastic behavior and emulsifying activity on several hydrophobic substrates. It also has a high capacity for binding cations and incorporating considerable quantities of sulfates, this latter feature being very unusual in bacterial polysaccharides.


Assuntos
Polissacarídeos Bacterianos/química , Rhodobacteraceae/isolamento & purificação , Rhodobacteraceae/metabolismo , Animais , Emulsificantes , Emulsões , Fucose/análise , Galactose/análise , Glucose/análise , Manose/análise , Mar Mediterrâneo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/isolamento & purificação , Rhodobacteraceae/crescimento & desenvolvimento , Ésteres do Ácido Sulfúrico/análise , Ésteres do Ácido Sulfúrico/metabolismo , Viscosidade
16.
J Microbiol Biotechnol ; 20(6): 978-84, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20622495

RESUMO

This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Trato Gastrointestinal/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Mucinas/metabolismo , Animais , Proteínas de Bactérias/análise , Espaço Extracelular/química , Trato Gastrointestinal/microbiologia , Humanos , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Modelos Biológicos , Suínos
17.
Biophys J ; 97(5): 1390-7, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19720027

RESUMO

We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target.


Assuntos
Bactérias/metabolismo , Bacteriocinas/metabolismo , Parede Celular/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bacteriocinas/isolamento & purificação , Calorimetria , Compostos de Dansil/metabolismo , Fluorescência , Polarização de Fluorescência , Cinética , Monossacarídeos/metabolismo , Movimento (Física) , Oligopeptídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Rotação , Termodinâmica , Fatores de Tempo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
18.
Res Microbiol ; 160(2): 134-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19068230

RESUMO

As part of an ongoing study to determine the true habitat of Bacillus species, we report here the isolation and characterisation of Bacillus subtilis from the human gastrointestinal tract (GIT). Strains were obtained from ileum biopsies as well as from faecal samples and their biotypes defined. 16S rRNA analysis revealed that most isolates of B. subtilis were highly conserved, in contrast to RAPD-PCR fingerprinting that showed greater diversity with 23 distinct RAPD types. The majority of B. subtilis strains examined possessed features that could be advantageous to survival within the GIT. This included the ability to form biofilms, to sporulate anaerobically and secretion of antimicrobials. At least one isolate was shown to form spores that carried an exosporium, a loosely attached outer layer to the mature endospore, this being the first report of B. subtilis spores carrying an exosporium. This study reinforces a growing view that B. subtilis and probably other species have adapted to life within the GIT and should be considered gut commensals rather than solely soil microorganisms.


Assuntos
Bacillus subtilis/isolamento & purificação , Trato Gastrointestinal/microbiologia , Adulto , Bacillus subtilis/fisiologia , Bacillus subtilis/ultraestrutura , Aderência Bacteriana , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Feminino , Genes de RNAr/genética , Humanos , Íleo/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Esporos Bacterianos/ultraestrutura
19.
J Microbiol Biotechnol ; 19(11): 1306-18, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19996681

RESUMO

The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes for the degradation of plant polysaccharide material. Two alpha-amylases designated as ScAmy54 and ScAmy43 were biochemically characterized and predicted to play an important role in starch degradation. Those enzymes produce specific oligosaccharides, essentially maltotriose, that have a considerable commercial interest. The primary structures of the two enzymes were analyzed by N-terminal sequencing, MALDI-TOF mass spectrometry, and cDNA cloning, and implied that the two proteins have the same N-terminal catalytic domain and ScAmy43 was produced from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. The result of genomic analysis suggested that the two enzymes originated from the same alpha-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during the S. sclerotiorum cultivation. The structural gene of ScAmy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 amino acids. ScAmy54 exhibited high amino acid identity to other liquefying fungal alpha-amylases, essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3D structure of 2guy from A. niger as template. ScAmy54 with three domains A, B, and C, including the well-known (beta/alpha)8-barrel motif in domain A, has a typical structure of the alpha-amylase family. ScAmy43 composed only of domains A and B constitutes a smallest fungal alpha-amylase with only a catalytic domain.


Assuntos
Ascomicetos/enzimologia , Homologia de Sequência de Aminoácidos , alfa-Amilases , Ascomicetos/genética , Sequência de Bases , Cálcio/metabolismo , Catálise , Domínio Catalítico , Clonagem Molecular , DNA Fúngico/análise , DNA Fúngico/genética , Genoma Fúngico , Dados de Sequência Molecular , Ligação Proteica , Sinais Direcionadores de Proteínas , Alinhamento de Sequência , Análise de Sequência , alfa-Amilases/química , alfa-Amilases/genética
20.
FEMS Immunol Med Microbiol ; 54(1): 1-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18631181

RESUMO

The group of exported proteins of a bacterium are those proteins that are sorted from the cytoplasm to the bacterial surface or to the surroundings of the microorganism. In probiotic bacteria, these proteins are of special relevance because they might determine important traits such as adhesion to intestinal surfaces and molecular cross-talking with the host. Current knowledge about the presence and biological relevance of exported proteins produced by the main genera of probiotic bacteria in the gastrointestinal environment is reviewed in this minireview. As will be seen, some of these proteins are involved in host adhesion or are able to modify certain signalization pathways within host cells, whereas others are important for the physiology of probiotic bacteria in the gastrointestinal tract.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Probióticos , Bactérias/imunologia , Proteínas de Bactérias/imunologia , Bifidobacterium/imunologia , Bifidobacterium/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Lactobacillus/imunologia , Lactobacillus/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF , Proteína 2 Semelhante ao Fator 7 de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA