Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7892): 263-267, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937938

RESUMO

Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.


Assuntos
Animais de Zoológico , Dieta , Mamíferos , Neoplasias , Envelhecimento , Animais , Animais de Zoológico/classificação , Tamanho Corporal , Peso Corporal , Carnivoridade , Dieta/veterinária , Longevidade , Mamíferos/classificação , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/veterinária , Filogenia , Fatores de Risco , Especificidade da Espécie
2.
Mol Biol Rep ; 51(1): 763, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874813

RESUMO

BACKGROUND: Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS: We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS: In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estudo de Associação Genômica Ampla , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla/métodos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Genes de Plantas/genética
3.
Nucleic Acids Res ; 49(D1): D144-D150, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33084905

RESUMO

Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.


Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Mensageiro/genética , Transcriptoma , Anfíbios/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crescimento & desenvolvimento , Cefalocordados/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Íntrons , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Répteis/genética , Répteis/crescimento & desenvolvimento , Répteis/metabolismo , Software , Urocordados/genética , Urocordados/crescimento & desenvolvimento , Urocordados/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
4.
Mol Biol Evol ; 38(8): 3247-3266, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33871580

RESUMO

Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.


Assuntos
Uso do Códon , Dictyostelium/genética , Seleção Genética , Adaptação Biológica , Composição de Bases , Biossíntese de Proteínas , RNA de Transferência/metabolismo
5.
Immunogenetics ; 74(5): 487-496, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084547

RESUMO

Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.


Assuntos
Charadriiformes , Caracteres Sexuais , Animais , Evolução Biológica , Encéfalo , Charadriiformes/genética , Feminino , Expressão Gênica , Masculino
6.
Mol Ecol ; 31(5): 1515-1526, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918851

RESUMO

Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic data sets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.


Assuntos
Arabidopsis , Aptidão Genética , Arabidopsis/genética , Sequência de Bases , Polimorfismo Genético , Seleção Genética
7.
Biol Lett ; 18(2): 20210553, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35193370

RESUMO

Females and males often exhibit different survival in nature, and it has been hypothesized that sex chromosomes may play a role in driving differential survival rates. For instance, the Y chromosome in mammals and the W chromosome in birds are often degenerated, with reduced numbers of genes, and loss of the Y chromosome in old men is associated with shorter life expectancy. However, mosaic loss of sex chromosomes has not been investigated in any non-human species. Here, we tested whether mosaic loss of the W chromosome (LOW) occurs with ageing in wild birds as a natural consequence of cellular senescence. Using loci-specific PCR and a target sequencing approach we estimated LOW in both young and adult individuals of two long-lived bird species and showed that the copy number of W chromosomes remains constant across age groups. Our results suggest that LOW is not a consequence of cellular ageing in birds. We concluded that the inheritance of the W chromosome in birds, unlike the Y chromosome in mammals, is more stable.


Assuntos
Cromossomos Humanos Y , Evolução Molecular , Animais , Aves/genética , Feminino , Humanos , Masculino , Mamíferos/genética , Mosaicismo , Cromossomos Sexuais/genética
8.
Proc Natl Acad Sci U S A ; 116(4): 1331-1336, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30617061

RESUMO

Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. We find that, while evolutionary divergence time between species or clades did not explain gene expression similarity, characteristics of the mating system correlated with neural gene expression patterns, and neural gene expression varied concordantly across vertebrates when species transition to monogamy. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.


Assuntos
Transcriptoma/genética , Vertebrados/genética , Animais , Anuros/genética , Arvicolinae/genética , Encéfalo/fisiologia , Ciclídeos/genética , Expressão Gênica/genética , Masculino , Camundongos , Ligação do Par , Peromyscus/genética , Filogenia , Reprodução/genética , Comportamento Sexual Animal/fisiologia , Aves Canoras/genética , Especificidade da Espécie
9.
BMC Evol Biol ; 20(1): 103, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807071

RESUMO

BACKGROUND: Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa. RESULTS: Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits. CONCLUSIONS: Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.


Assuntos
Clima , Répteis/fisiologia , Processos de Determinação Sexual , Temperatura , Animais , Cruzamento , Filogenia , Répteis/genética , Processos de Determinação Sexual/genética , Razão de Masculinidade
10.
BMC Dev Biol ; 16: 13, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27175727

RESUMO

BACKGROUND: During early development of the nervous system, gene expression patterns are known to vary widely depending on the specific developmental trajectories of different structures. Observable changes in gene expression profiles throughout development are determined by an underlying network of precise regulatory interactions between individual genes. Elucidating the organizing principles that shape this gene regulatory network is one of the central goals of developmental biology. Whether the developmental programme is the result of a dynamic driven by a fixed architecture of regulatory interactions, or alternatively, the result of waves of regulatory reorganization is not known. RESULTS: Here we contrast these two alternative models by examining existing expression data derived from the developing human brain in prenatal and postnatal stages. We reveal a sharp change in gene expression profiles at birth across brain areas. This sharp division between foetal and postnatal profiles is not the result of pronounced changes in level of expression of existing gene networks. Instead we demonstrate that the perinatal transition is marked by the widespread regulatory rearrangement within and across existing gene clusters, leading to the emergence of new functional groups. This rearrangement is itself organized into discrete blocks of genes, each targeted by a distinct set of transcriptional regulators and associated to specific biological functions. CONCLUSIONS: Our results provide evidence of an acute modular reorganization of the regulatory architecture of the brain transcriptome occurring at birth, reflecting the reassembly of new functional associations required for the normal transition from prenatal to postnatal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Genes Reguladores , Adolescente , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Modelos Biológicos , Gravidez
11.
Mol Biol Evol ; 32(10): 2749-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169943

RESUMO

Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.


Assuntos
Processamento Alternativo/genética , Ftirápteros/genética , Animais , Ontologia Genética , Genes de Insetos , Humanos , Pediculus/genética
12.
Mol Biol Evol ; 31(1): 59-69, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24072814

RESUMO

The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive role for gene and exon presence-absence variation (PAV). To shed light on the possible functional relevance of polymorphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density. Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them.


Assuntos
Arabidopsis/genética , Evolução Molecular , Genes de Plantas , Variação Genética , Processamento Alternativo , Elementos de DNA Transponíveis , Éxons , Expressão Gênica , Fases de Leitura Aberta , Análise de Sequência de DNA , Transdução de Sinais
13.
Mol Biol Evol ; 31(6): 1402-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682283

RESUMO

What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species--an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced N(e) in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity.


Assuntos
Processamento Alternativo , Evolução Biológica , Eucariotos/classificação , Eucariotos/genética , Animais , Evolução Molecular , Etiquetas de Sequências Expressas , Humanos , Filogenia , Especificidade da Espécie , Transcriptoma
14.
Mol Ecol ; 24(12): 3093-106, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25930165

RESUMO

Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the 'edges' of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage-specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage-specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage-specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.


Assuntos
Arabidopsis/genética , Evolução Molecular , Éxons , Seleção Genética , Adaptação Biológica/genética , Sequência Conservada , Genoma de Planta
15.
Mol Biol Evol ; 30(12): 2588-601, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24023392

RESUMO

In female mammals most X-linked genes are subject to X-inactivation. However, in humans some X-linked genes escape silencing, these escapees being candidates for the phenotypic aberrations seen in polyX karyotypes. These escape genes have been reported to be under stronger purifying selection than other X-linked genes. Although it is known that escape from X-inactivation is much more common in humans than in mice, systematic assays of escape in humans have to date employed only interspecies somatic cell hybrids. Here we provide the first systematic next-generation sequencing analysis of escape in a human cell line. We analyzed RNA and genotype sequencing data obtained from B lymphocyte cell lines derived from Europeans (CEU) and Yorubans (YRI). By replicated detection of heterozygosis in the transcriptome, we identified 114 escaping genes, including 76 not previously known to be escapees. The newly described escape genes cluster on the X chromosome in the same chromosomal regions as the previously known escapees. There is an excess of escaping genes associated with mental retardation, consistent with this being a common phenotype of polyX phenotypes. We find both differences between populations and between individuals in the propensity to escape. Indeed, we provide the first evidence for there being both hyper- and hypo-escapee females in the human population, consistent with the highly variable phenotypic presentation of polyX karyotypes. Considering also prior data, we reclassify genes as being always, never, and sometimes escape genes. We fail to replicate the prior claim that genes that escape X-inactivation are under stronger purifying selection than others.


Assuntos
Expressão Gênica , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Inativação do Cromossomo X , Animais , Povo Asiático/genética , Linhagem Celular , Evolução Molecular , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Taxa de Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , População Branca/genética , Cromossomo X
16.
Proc Biol Sci ; 281(1775): 20132428, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24285197

RESUMO

Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.


Assuntos
Encéfalo/anatomia & histologia , Quimiotaxia/genética , Mamíferos/anatomia & histologia , Animais , Evolução Biológica , Evolução Molecular , Genômica , Humanos , Família Multigênica , Tamanho do Órgão , Filogenia , Análise de Sequência de DNA , Transdução de Sinais/genética , Especificidade da Espécie
17.
Hum Mol Genet ; 20(22): 4422-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21862452

RESUMO

Recent genome-wide analyses have detected numerous cancer-specific alternative splicing (AS) events. Whether transcripts containing cancer-specific AS events are likely to be translated into functional proteins or simply reflect noisy splicing, thereby determining their clinical relevance, is not known. Here we show that consistent with a noisy-splicing model, cancer-specific AS events generally tend to be rare, containing more premature stop codons and have less identifiable functional domains in both the human and mouse. Interestingly, common cancer-derived AS transcripts from tumour suppressor and oncogenes show marked changes in premature stop-codon frequency; with tumour suppressor genes exhibiting increased levels of premature stop codons whereas oncogenes have the opposite pattern. We conclude that tumours tend to have faithful oncogene splicing and a higher incidence of premature stop codons among tumour suppressor and cancer-specific splice variants showing the importance of considering splicing noise when analysing cancer-specific splicing changes.


Assuntos
Neoplasias/genética , Oncogenes/genética , Splicing de RNA/genética , Processamento Alternativo/genética , Animais , Humanos , Camundongos
18.
Nat Genet ; 31(2): 180-3, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992122

RESUMO

It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.


Assuntos
Ordem dos Genes , Genoma Humano , Humanos , Especificidade de Órgãos/genética
19.
Prog Brain Res ; 275: 165-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841568

RESUMO

This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/patologia , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Genômica , Mamíferos
20.
PLoS One ; 18(1): e0280364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649303

RESUMO

The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.


Assuntos
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Perfilação da Expressão Gênica , Prognóstico , Linfócitos T CD4-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA