Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 563(7732): 574-578, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429609

RESUMO

Stomatal cell lineage is an archetypal example of asymmetric cell division (ACD), which is necessary for plant survival1-4. In Arabidopsis thaliana, the GLYCOGEN SYNTHASE KINASE3 (GSK3)/SHAGGY-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2) phosphorylates both the mitogen-activated protein kinase (MAPK) signalling module5,6 and its downstream target, the transcription factor SPEECHLESS (SPCH)7, to promote and restrict ACDs, respectively, in the same stomatal lineage cell. However, the mechanisms that balance these mutually exclusive activities remain unclear. Here we identify the plant-specific protein POLAR as a stomatal lineage scaffold for a subset of GSK3-like kinases that confines them to the cytosol and subsequently transiently polarizes them within the cell, together with BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), before ACD. As a result, MAPK signalling is attenuated, enabling SPCH to drive ACD in the nucleus. Moreover, POLAR turnover requires phosphorylation on specific residues, mediated by GSK3. Our study reveals a mechanism by which the scaffolding protein POLAR ensures GSK3 substrate specificity, and could serve as a paradigm for understanding regulation of GSK3 in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular Assimétrica , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Citosol/enzimologia , Citosol/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Fenótipo , Fosforilação , Estômatos de Plantas/citologia , Ligação Proteica , Proteínas Quinases/metabolismo , Especificidade por Substrato
2.
Plant Cell ; 30(7): 1511-1522, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884623

RESUMO

N6-methylated adenine (m6A) is the most frequent posttranscriptional modification in eukaryotic mRNA. Turnover of RNA generates N6-methylated AMP (N6-mAMP), which has an unclear metabolic fate. We show that Arabidopsis thaliana and human cells require an N6-mAMP deaminase (ADAL, renamed MAPDA) to catabolize N6-mAMP to inosine monophosphate in vivo by hydrolytically removing the aminomethyl group. A phylogenetic, structural, and biochemical analysis revealed that many fungi partially or fully lack MAPDA, which coincides with a minor role of N6A-RNA methylation in these organisms. MAPDA likely protects RNA from m6A misincorporation. This is required because eukaryotic RNA polymerase can use N6-mATP as a substrate. Upon abrogation of MAPDA, root growth is slightly reduced, and the N6-methyladenosine, N6-mAMP, and N6-mATP concentrations are increased in Arabidopsis. Although this will potentially lead to m6A misincorporation into RNA, we show that the frequency is too low to be reliably detected in vivo. Since N6-mAMP was severalfold more abundant than N6-mATP in MAPDA mutants, we speculate that additional molecular filters suppress the generation of N6-mATP. Enzyme kinetic data indicate that adenylate kinases represent such filters being highly selective for AMP versus N6-mAMP phosphorylation. We conclude that a multilayer molecular protection system is in place preventing N6-mAMP accumulation and salvage.


Assuntos
AMP Desaminase/metabolismo , AMP Desaminase/classificação , AMP Desaminase/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Filogenia , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia
3.
Carbohydr Polym ; 301(Pt A): 120304, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436867

RESUMO

Chitin is an essential structural component of complex and dynamic fungal cell walls. It may be converted by partial or full deacetylation to yield chitosan. Here, we describe a method to quantify N-acetyl d-glucosamine (GlcNAc, A) and d-glucosamine (GlcN, D) units and, thus, total amount and average fraction of acetylation (x̅ FA) of the chitinous polymers by complete enzyme hydrolysis of the polymers followed by mass spectrometric analyses of the monomers. First, the native polymers were isotopically N-acetylated, then enzymatically hydrolyzed to A and R (2H3N-acetyl-d-glucosamine - former D) monomers. Relative abundances of A and R units were used to calculate x̅ FA, and a double-isotopically labeled internal standard R* ([13C2,2H3] N-acetyl-d-glucosamine) monomer was used to calculate the absolute amounts of GlcNAc and GlcN units present in the fungal samples. The method was validated using known chitosan polymers and is suitable for both purified cell walls and whole mycelia.


Assuntos
Quitina , Quitosana , Quitina/química , Quitosana/química , Polímeros , Acetilglucosamina , Glucosamina/química , Parede Celular
4.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653886

RESUMO

The biotrophic fungus Ustilago maydis harbors a chitin deacetylase (CDA) family of six active genes as well as one pseudogene which are differentially expressed during colonization. This includes one secreted soluble CDA (Cda4) and five putatively glycosylphosphatidylinositol (GPI)-anchored CDAs, of which Cda7 belongs to a new class of fungal CDAs. Here, we provide a comprehensive functional study of the entire family. While budding cells of U. maydis showed a discrete pattern of chitosan staining, biotrophic hyphae appeared surrounded by a chitosan layer. We purified all six active CDAs and show their activity on different chitin substrates. Single as well as multiple cda mutants were generated and revealed a virulence defect for mutants lacking cda7 We implicated cda4 in production of the chitosan layer surrounding biotrophic hyphae and demonstrated that the loss of this layer does not reduce virulence. By combining different cda mutations, we detected redundancy as well as specific functions for certain CDAs. Specifically, certain combinations of mutations significantly affected virulence concomitantly with reduced adherence, appressorium formation, penetration, and activation of plant defenses. Attempts to inactivate all seven cda genes simultaneously were unsuccessful, and induced depletion of cda2 in a background lacking the other six cda genes illustrated an essential role of chitosan for cell wall integrity.IMPORTANCE The basidiomycete Ustilago maydis causes smut disease in maize, causing substantial losses in world corn production. This nonobligate pathogen penetrates the plant cell wall with the help of appressoria and then establishes an extensive biotrophic interaction, where the hyphae are tightly encased by the plant plasma membrane. For successful invasion and development in plant tissue, recognition of conserved fungal cell wall components such as chitin by the plant immune system needs to be avoided or suppressed. One strategy to achieve this lies in the modification of chitin to chitosan by chitin deacetylases (CDAs). U. maydis has seven cda genes. This study reveals discrete as well as redundant contributions of these genes to virulence as well as to cell wall integrity. Unexpectedly, the inactivation of all seven genes is not tolerated, revealing an essential role of chitosan for viability.


Assuntos
Amidoidrolases/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Quitina/metabolismo , Quitosana/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Amidoidrolases/classificação , Amidoidrolases/metabolismo , Basidiomycota/enzimologia , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Virulência , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA