Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 26(1): 77-96, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35984546

RESUMO

VEGFR2 signaling in endothelial cells (ECs) is regulated by reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria, which plays an important role in postnatal angiogenesis. However, it remains unclear how highly diffusible ROS signal enhances VEGFR2 signaling and reparative angiogenesis. Protein disulfide isomerase A1 (PDIA1) functions as an oxidoreductase depending on the redox environment. We hypothesized that PDIA1 functions as a redox sensor to enhance angiogenesis. Here we showed that PDIA1 co-immunoprecipitated with VEGFR2 or colocalized with either VEGFR2 or an early endosome marker Rab5 at the perinuclear region upon stimulation of human ECs with VEGF. PDIA1 silencing significantly reduced VEGF-induced EC migration, proliferation and spheroid sprouting via inhibiting VEGFR2 signaling. Mechanistically, VEGF stimulation rapidly increased Cys-OH formation of PDIA1 via the NOX4-mitochondrial ROS axis. Overexpression of "redox-dead" mutant PDIA1 with replacement of the active four Cys residues with Ser significantly inhibited VEGF-induced PDIA1-CysOH formation and angiogenic responses via reducing VEGFR2 phosphorylation. Pdia1+/- mice showed impaired angiogenesis in developmental retina and Matrigel plug models as well as ex vivo aortic ring sprouting model. Study using hindlimb ischemia model revealed that PDIA1 expression was markedly increased in angiogenic ECs of ischemic muscles, and that ischemia-induced limb perfusion recovery and neovascularization were impaired in EC-specific Pdia1 conditional knockout mice. These results suggest that PDIA1 can sense VEGF-induced H2O2 signal via CysOH formation to promote VEGFR2 signaling and angiogenesis in ECs, thereby enhancing postnatal angiogenesis. The oxidized PDIA1 is a potential therapeutic target for treatment of ischemic vascular diseases.


Assuntos
Células Endoteliais , Isomerases de Dissulfetos de Proteínas , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peróxido de Hidrogênio/metabolismo , Neovascularização Fisiológica , Oxirredução , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Isquemia/metabolismo
2.
FASEB J ; 36(3): e22177, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142393

RESUMO

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica , Corrida , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , ATPases Transportadoras de Cobre/sangue , ATPases Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Exercício Físico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Condicionamento Físico Animal/métodos , Ratos , Superóxido Dismutase/sangue
3.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35132998

RESUMO

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/prevenção & controle , Masculino , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores
5.
Int Immunol ; 32(4): 233-241, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31819988

RESUMO

Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.


Assuntos
Pulmão/imunologia , Linfócitos/imunologia , Proteínas Ativadoras de ras GTPase/imunologia , Animais , Homeostase/imunologia , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Ativadoras de ras GTPase/deficiência
6.
FASEB J ; 34(1): 540-554, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914585

RESUMO

A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Receptores OX40/metabolismo , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores OX40/genética , Transdução de Sinais
7.
Am J Physiol Cell Physiol ; 319(5): C933-C944, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936699

RESUMO

Caveolin-1 (Cav-1) is a scaffolding protein and a major component of caveolae/lipid rafts. Previous reports have shown that endothelial dysfunction in Cav-1-deficient (Cav-1-/-) mice is mediated by elevated oxidative stress through endothelial nitric oxide synthase (eNOS) uncoupling and increased NADPH oxidase. Oxidant stress is the net balance of oxidant generation and scavenging, and the role of Cav-1 as a regulator of antioxidant enzymes in vascular tissue is poorly understood. Extracellular SOD (SOD3) is a copper (Cu)-containing enzyme that is secreted from vascular smooth muscle cells/fibroblasts and subsequently binds to the endothelial cells surface, where it scavenges extracellular [Formula: see text] and preserves endothelial function. SOD3 activity is dependent on Cu, supplied by the Cu transporter ATP7A, but whether Cav-1 regulates the ATP7A-SOD3 axis and its role in oxidative stress-mediated vascular dysfunction has not been studied. Here we show that the activity of SOD3, but not SOD1, was significantly decreased in Cav-1-/- vessels, which was rescued by re-expression of Cav-1 or Cu supplementation. Loss of Cav-1 reduced ATP7A protein, but not mRNA, and this was mediated by ubiquitination of ATP7A and proteasomal degradation. ATP7A bound to Cav-1 and was colocalized with SOD3 in caveolae/lipid rafts or perinucleus in vascular tissues or cells. Impaired endothelium-dependent vasorelaxation in Cav-1-/- mice was rescued by gene transfer of SOD3 or by ATP7A-overexpressing transgenic mice. These data reveal an unexpected role of Cav-1 in stabilizing ATP7A protein expression by preventing its ubiquitination and proteasomal degradation, thereby increasing SOD3 activity, which in turn protects against vascular oxidative stress-mediated endothelial dysfunction.


Assuntos
Caveolina 1/genética , ATPases Transportadoras de Cobre/genética , Células Endoteliais/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase/genética , Animais , Aorta/citologia , Aorta/metabolismo , Caveolina 1/deficiência , Cobre/farmacologia , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Ubiquitinação/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
8.
Arterioscler Thromb Vasc Biol ; 39(11): 2320-2337, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554420

RESUMO

OBJECTIVE: Copper (Cu) is essential micronutrient, and its dysregulation is implicated in aortic aneurysm (AA) development. The Cu exporter ATP7A (copper-transporting P-type ATPase/Menkes ATPase) delivers Cu via the Cu chaperone Atox1 (antioxidant 1) to secretory Cu enzymes, such as lysyl oxidase, and excludes excess Cu. Lysyl oxidase is shown to protect against AA formation. However, the role and mechanism of ATP7A in AA pathogenesis remain unknown. Approach and Results: Here, we show that Cu chelator markedly inhibited Ang II (angiotensin II)-induced abdominal AA (AAA) in which ATP7A expression was markedly downregulated. Transgenic ATP7A overexpression prevented Ang II-induced AAA formation. Conversely, Cu transport dysfunctional ATP7Amut/+/ApoE-/- mice exhibited robust AAA formation and dissection, excess aortic Cu accumulation as assessed by X-ray fluorescence microscopy, and reduced lysyl oxidase activity. In contrast, AAA formation was not observed in Atox1-/-/ApoE-/- mice, suggesting that decreased lysyl oxidase activity, which depends on both ATP7A and Atox1, was not sufficient to develop AAA. Bone marrow transplantation suggested importance of ATP7A in vascular cells, not bone marrow cells, in AAA development. MicroRNA (miR) array identified miR-125b as a highly upregulated miR in AAA from ATP7Amut/+/ApoE-/- mice. Furthermore, miR-125b target genes (histone methyltransferase Suv39h1 and the NF-κB negative regulator TNFAIP3 [tumor necrosis factor alpha induced protein 3]) were downregulated, which resulted in increased proinflammatory cytokine expression, aortic macrophage recruitment, MMP (matrix metalloproteinase)-2/9 activity, elastin fragmentation, and vascular smooth muscle cell loss in ATP7Amut/+/ApoE-/- mice and reversed by locked nucleic acid-anti-miR-125b infusion. CONCLUSIONS: ATP7A downregulation/dysfunction promotes AAA formation via upregulating miR-125b, which augments proinflammatory signaling in a Cu-dependent manner. Thus, ATP7A is a potential therapeutic target for inflammatory vascular disease.


Assuntos
Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/fisiopatologia , ATPases Transportadoras de Cobre/fisiologia , MicroRNAs/fisiologia , Angiotensina II/efeitos dos fármacos , Animais , Apoptose , Células Cultivadas , Quelantes/farmacologia , Cobre/metabolismo , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Molibdênio/farmacologia , Músculo Liso Vascular/citologia , Regulação para Cima
9.
J Immunol ; 201(8): 2414-2426, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201810

RESUMO

Ischemic tissue damage activates hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM)-generating myeloid cells, and persistent HSPC activity may drive chronic inflammation and impair tissue recovery. Although increased reactive oxygen species in the BM regulate HSPC functions, their roles in myelopoiesis of activated HSPCs and subsequent tissue recovery during ischemic damage are not well understood. In this paper, we report that deletion of Nox2 NADPH oxidase in mice results in persistent elevations in BM HSPC activity and levels of inflammatory monocytes/macrophages in BM and ischemic tissue in a model of hindlimb ischemia. Ischemic tissue damage induces oxidants in BM such as elevations of hydrogen peroxide and oxidized phospholipids, which activate redox-sensitive Lyn kinase in a Nox2-dependent manner. Moreover, during tissue recovery after ischemic injury, this Nox2-ROS-Lyn kinase axis is induced by Nox2 in neutrophils that home to the BM, which inhibits HSPC activity and inflammatory monocyte generation and promotes tissue regeneration after ischemic damage. Thus, oxidant signaling in the BM mediated by Nox2 in neutrophils regulates myelopoiesis of HSPCs to promote regeneration of damaged tissue.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Membro Posterior/patologia , Isquemia/imunologia , NADPH Oxidase 2/metabolismo , Neutrófilos/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese , NADPH Oxidase 2/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Transdução de Sinais , Quinases da Família src/metabolismo
10.
Am J Physiol Cell Physiol ; 317(6): C1161-C1171, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553645

RESUMO

NADPH oxidase (NOX)-derived reactive oxygen species (ROS) and copper (Cu), an essential micronutrient, have been implicated in vascular inflammatory diseases. We reported that in proinflammatory cytokine TNF-α-stimulated endothelial cells (ECs), cytosolic Cu chaperone antioxidant-1 (Atox1) functions as a Cu-dependent transcription factor for the NOX organizer p47phox, thereby increasing ROS-dependent inflammatory gene expression. However, the role and mechanism of Atox1 nuclear translocation in inflamed ECs remain unclear. Using enface staining and nuclear fractionation, here we show that Atox1 was localized in the nucleus in inflamed aortas from ApoE-/- mice with angiotensin II infusion on a high-fat diet, while it was found in cytosol in those from control mice. In cultured human ECs, TNF-α stimulation promoted Atox1 nuclear translocation within 15 min, which was associated with Atox1 binding to TNF-α receptor-associated factor 4 (TRAF4) in a Cu-dependent manner. TRAF4 depletion by siRNA significantly inhibited Atox1 nuclear translocation, p47phox expression, and ROS production as well as its downstream VCAM1/ICAM1 expression and monocyte adhesion to inflamed ECs, which were rescued by overexpression of nuclear targeted Atox1. Furthermore, Atox1 colocalized with TRAF4 at the nucleus in TNF-α-stimulated inflamed ECs and vessels. In summary, Cu-dependent Atox1 binding to TRAF4 plays an important role in Atox1 nuclear translocation and ROS-dependent inflammatory responses in TNF-α-stimulated ECs. Thus the Atox1-TRAF4 axis is a novel therapeutic target for vascular inflammatory disease such as atherosclerosis.


Assuntos
Aterosclerose/genética , Proteínas de Transporte de Cobre/genética , Chaperonas Moleculares/genética , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Fator 4 Associado a Receptor de TNF/genética , Angiotensina II/administração & dosagem , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Cobre/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Chaperonas Moleculares/metabolismo , NADPH Oxidases/metabolismo , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 4 Associado a Receptor de TNF/antagonistas & inibidores , Fator 4 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 38(3): 529-541, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301787

RESUMO

OBJECTIVE: Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired. APPROACH AND RESULTS: Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression. CONCLUSION: Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Endotélio Vascular/enzimologia , Músculo Liso Vascular/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/metabolismo , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Células Cultivadas , ATPases Transportadoras de Cobre/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Estabilidade Enzimática , Feminino , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Vasodilatação
12.
Am J Physiol Cell Physiol ; 315(2): C186-C201, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874110

RESUMO

Copper (Cu) is an essential micronutrient but excess Cu is potentially toxic. Its important propensity to cycle between two oxidation states accounts for its frequent presence as a cofactor in many physiological processes through Cu-containing enzymes, including mitochondrial energy production (via cytochrome c-oxidase), protection against oxidative stress (via superoxide dismutase), and extracellular matrix stability (via lysyl oxidase). Since free Cu is potentially toxic, the bioavailability of intracellular Cu is tightly controlled by Cu transporters and Cu chaperones. Recent evidence reveals that these Cu transport systems play an essential role in the physiological responses of cardiovascular cells, including cell growth, migration, angiogenesis and wound repair. In response to growth factors, cytokines, and hypoxia, their expression, subcellular localization, and function are tightly regulated. Cu transport systems and their regulators have also been linked to various cardiovascular pathophysiologies such as hypertension, inflammation, atherosclerosis, diabetes, cardiac hypertrophy, and cardiomyopathy. A greater appreciation of the central importance of Cu transporters and Cu chaperones in cell signaling and gene expression in cardiovascular biology offers the possibility of identifying new therapeutic targets for cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/fisiopatologia , Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/fisiologia
13.
Am J Physiol Cell Physiol ; 315(6): C850-C862, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257103

RESUMO

Vascular smooth muscle cell (VSMC) migration contributes to neointimal formation after vascular injury. We previously demonstrated that copper (Cu) transporter ATP7A is involved in platelet-derived growth factor (PDGF)-induced VSMC migration in a Cu- and Rac1-dependent manner. The underlying mechanism is still unknown. Here we show that ATP7A interacts with IQGAP1, a Rac1 and receptor tyrosine kinase binding scaffolding proteins, which mediates PDGF-induced VSMC migration and vascular remodeling. In cultured rat aortic SMCs, PDGF stimulation rapidly promoted ATP7A association with IQGAP1 and Rac1 and their translocation to the lipid rafts and leading edge. Cotransfection assay revealed that ATP7A directly bound to NH2-terminal domain of IQGAP1. Functionally, either ATP7A or IQGAP1 depletion using siRNA significantly inhibited PDGF-induced VSMC migration without additive effects, suggesting that IQGAP1 and ATP7A are in the same axis to promote migration. Furthermore, IQGAP1 siRNA blocked PDGF-induced ATP7A association with Rac1 as well as its translocation to leading edge, while PDGF-induced IQGAP1 translocation was not affected by ATP7A siRNA or Cu chelator. Overexpression of mutant IQGAP1 lacking a Rac1 binding site prevented PDGF-induced translocation of Rac1, but not ATP7A, to the leading edge, thereby inhibiting lamellipodia formation and VSMC migration. In vivo, ATP7A colocalized with IQGAP1 at neointimal VSMCs in a mice wire injury model, while neointimal formation and extracellular matrix deposition induced by vascular injury were inhibited in ATP7A mutant mice with reduced Cu transporter function. In summary, IQGAP1 functions as ATP7A and Rac1 binding scaffolding protein to organize PDGF-dependent ATP7A translocation to the lamellipodial leading edge, thereby promoting VSMC migration and vascular remodeling.


Assuntos
ATPases Transportadoras de Cobre/genética , Fator de Crescimento Derivado de Plaquetas/genética , Remodelação Vascular/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/genética , Animais , Aorta/citologia , Aorta/metabolismo , Movimento Celular/genética , Cobre/química , Cobre/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Camundongos , Músculo Liso Vascular/crescimento & desenvolvimento , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Fosforilação , Ligação Proteica , Ratos
14.
Am J Physiol Cell Physiol ; 312(6): C749-C764, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424170

RESUMO

Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program.


Assuntos
Retroalimentação Fisiológica , Peróxido de Hidrogênio/metabolismo , Glicoproteínas de Membrana/genética , Mitocôndrias/metabolismo , NADPH Oxidases/genética , Transdução de Sinais , Técnicas Biossensoriais , Catalase/genética , Catalase/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oxirredução , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Imagem com Lapso de Tempo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 312(5): H896-H906, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235790

RESUMO

High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm2) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H2O2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature.NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiologia , Exercício Físico/fisiologia , Microvasos/fisiologia , Estresse Oxidativo/fisiologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Artérias/fisiologia , Pressão Sanguínea/fisiologia , Células Endoteliais/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Humanos , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Resistência Vascular
16.
Arterioscler Thromb Vasc Biol ; 36(5): 846-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26988594

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) are known to regulate platelet activation; however, the mechanisms of ROS production during platelet activation remain unclear. Platelets express different isoforms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases (NOXs). Here, we investigated the role of NOX1 and NOX2 in ROS generation and platelet activation using NOX1 and NOX2 knockout mice. APPROACH AND RESULTS: NOX1(-/Y) platelets showed selective defects in G-protein-coupled receptor-mediated platelet activation induced by thrombin and thromboxane A2 analog U46619, but were not affected in platelet activation induced by collagen-related peptide, a glycoprotein VI agonist. In contrast, NOX2(-/-) platelets showed potent inhibition of collagen-related peptide-induced platelet activation, and also showed partial inhibition of thrombin-induced platelet activation. Consistently, production of ROS was inhibited in NOX1(-/Y) platelets stimulated with thrombin, but not collagen-related peptide, whereas NOX2(-/-) platelets showed reduced ROS generation induced by collagen-related peptide or thrombin. Reduced ROS generation in NOX1/2-deficient platelets is associated with impaired activation of Syk and phospholipase Cγ2, but minimally affected mitogen-activated protein kinase pathways. Interestingly, laser-induced arterial thrombosis was impaired but the bleeding time was not affected in NOX2(-/-) mice. Wild-type thrombocytopenic mice injected with NOX2(-/-) platelets also showed defective arterial thrombosis, suggesting an important role for platelet NOX2 in thrombosis in vivo but not hemostasis. CONCLUSIONS: NOX1 and NOX2 play differential roles in different platelet activation pathways and in thrombosis. ROS generated by these enzymes promotes platelet activation via the Syk/phospholipase Cγ2/calcium signaling pathway.


Assuntos
Plaquetas/enzimologia , Glicoproteínas de Membrana/sangue , NADH NADPH Oxirredutases/sangue , NADPH Oxidases/sangue , Ativação Plaquetária , Espécies Reativas de Oxigênio/sangue , Trombose/sangue , Trombose/enzimologia , Animais , Plaquetas/efeitos dos fármacos , Antígeno CD11b/sangue , Sinalização do Cálcio , Modelos Animais de Doenças , Ativação Enzimática , Predisposição Genética para Doença , Hemostasia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADH NADPH Oxirredutases/deficiência , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Fenótipo , Fosfolipase C gama/sangue , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/sangue , Quinase Syk/sangue , Trombina/metabolismo , Trombose/genética , Fatores de Tempo
17.
Arterioscler Thromb Vasc Biol ; 36(1): 86-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586661

RESUMO

OBJECTIVE: Comprehensive understanding of the mechanisms regulating angiogenesis might provide new strategies for angiogenic therapies for treating diverse physiological and pathological ischemic conditions. The E-twenty six (ETS) factor Ets variant 2 (ETV2; aka Ets-related protein 71) is essential for the formation of hematopoietic and vascular systems. Despite its indispensable function in vessel development, ETV2 role in adult angiogenesis has not yet been addressed. We have therefore investigated the role of ETV2 in vascular regeneration. APPROACH AND RESULTS: We used endothelial Etv2 conditional knockout mice and ischemic injury models to assess the role of ETV2 in vascular regeneration. Although Etv2 expression was not detectable under steady-state conditions, its expression was readily observed in endothelial cells after injury. Mice lacking endothelial Etv2 displayed impaired neovascularization in response to eye injury, wounding, or hindlimb ischemic injury. Lentiviral Etv2 expression in ischemic hindlimbs led to improved recovery of blood perfusion with enhanced vessel formation. After injury, fetal liver kinase 1 (Flk1), aka VEGFR2, expression and neovascularization were significantly upregulated by Etv2, whereas Flk1 expression and vascular endothelial growth factor response were significantly blunted in Etv2-deficient endothelial cells. Conversely, enforced Etv2 expression enhanced vascular endothelial growth factor-mediated endothelial sprouting from embryoid bodies. Lentiviral Flk1 expression rescued angiogenesis defects in endothelial Etv2 conditional knockout mice after hindlimb ischemic injury. Furthermore, Etv2(+/-); Flk1(+/-) double heterozygous mice displayed a more severe hindlimb ischemic injury response compared with Etv2(+/-) or Flk1(+/-) heterozygous mice, revealing an epistatic interaction between ETV2 and FLK1 in vascular regeneration. CONCLUSIONS: Our study demonstrates a novel obligatory role for the ETV2 in postnatal vascular repair and regeneration.


Assuntos
Proteínas Angiogênicas/metabolismo , Células Endoteliais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Regeneração , Fatores de Transcrição/metabolismo , Proteínas Angiogênicas/deficiência , Proteínas Angiogênicas/genética , Animais , Células Cultivadas , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Heterozigoto , Membro Posterior , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Isquemia/terapia , Lentivirus/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fenótipo , Recuperação de Função Fisiológica , Transdução de Sinais , Pele/irrigação sanguínea , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
18.
J Cell Sci ; 127(Pt 20): 4518-30, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128562

RESUMO

Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis.


Assuntos
Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Neovascularização Fisiológica/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Neovascularização Fisiológica/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Deleção de Sequência/genética , Transgenes/genética
19.
Arterioscler Thromb Vasc Biol ; 35(4): 877-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25675998

RESUMO

OBJECTIVE: Transient receptor potential melastatin-2 (TRPM2) channel is a nonselective cation channel that mediates influx of Ca(2+) and Na(+) with relative permeability of PCa:PNa ≈0.6 in response to cellular oxidative stress. As angiogenesis and ischemic neovascularization are both significantly dependent on oxidant signaling, here we investigated the possible role of vascular endothelial growth factor (VEGF)-induced reactive oxygen species production in activating TRPM2-dependent Ca(2+) signaling and in the mechanism of angiogenesis and ischemic neovascularization. APPROACH AND RESULTS: We observed that VEGF stimulation rapidly induced the association of TRPM2 and cellular Src kinase with vascular endothelial-cadherin forming a signalplex at vascular endothelial-cadherin junctions in endothelial cells. Using endothelial cells isolated from TRPM2(-/-) mice or after small interfering RNA depletion of TRPM2, we demonstrated that TRPM2-activated Ca(2+) signaling was required for cellular Src kinase-induced phosphorylation of vascular endothelial-cadherin at Y658 and Y731, the crucial sites involved in vascular endothelial-cadherin internalization in response to VEGF. VEGF-induced reactive oxygen species generation activated TRPM2-induced Ca(2+) entry, whereas the reactive oxygen species-insensitive TRPM2 mutant (C1008→A) showed impaired Ca(2+) entry. Endothelial cells depleted of TRPM2 also displayed significantly perturbed migratory phenotype and impaired activation of cellular Src in response to VEGF. TRPM2(-/-) mice reconstituted with wild-type myeloid cells demonstrated aberrant angiogenesis and neovascularization in the hindlimb ischemia model as compared with wild-type mice. CONCLUSIONS: VEGF-induced angiogenesis and postischemic neovascularization in mice required reactive oxygen species generation in endothelial cells and resultant TRPM2 activation. Thus, our findings provide novel insight into the role of TRPM2 in mechanism of angiogenesis and ischemic neovascularization.


Assuntos
Células Endoteliais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Impedância Elétrica , Membro Posterior , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA , Transdução de Sinais , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 308(12): H1451-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862828

RESUMO

Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled "Mechanosignaling in the Vasculature." This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses.


Assuntos
Vasos Sanguíneos/metabolismo , Mecanotransdução Celular , Animais , Vasos Sanguíneos/fisiopatologia , Células Endoteliais/metabolismo , Humanos , Canais KATP/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Oxirredução , Estresse Oxidativo , Estimulação Física , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA