Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(6): 1155-1156, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200794

RESUMO

In this issue of Molecular Cell, Gonatopoulos-Pournatzis et al. (2020) report a neuron-specific microexon in eIF4G translation initiation factors that dampens synaptic protein translation. Autism-associated disruption of this exon results in increased protein production, likely through reduced coalescence with cytoplasmic ribonucleoprotein granule components, including FMRP.


Assuntos
Transtorno Autístico , Fator de Iniciação Eucariótico 4G , Animais , Encéfalo , Cognição , Plumas
2.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029005

RESUMO

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Células-Tronco Embrionárias , Células Hep G2 , Humanos , Células K562 , Camundongos , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
3.
EMBO J ; 35(20): 2179-2191, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27647875

RESUMO

Uridylation of various cellular RNA species at the 3' end has been generally linked to RNA degradation. In mammals, uridylated pre-let-7 miRNAs and mRNAs are targeted by the 3' to 5' exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross-linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2-dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II-derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.


Assuntos
Exorribonucleases/metabolismo , RNA não Traduzido/metabolismo , Linhagem Celular , Exorribonucleases/genética , Humanos , Imunoprecipitação , Nucleotidiltransferases/metabolismo
4.
RNA ; 19(12): 1632-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141620

RESUMO

The mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA function and decay has long remained enigmatic. Only recently, 3' uridylation via LIN28A-TUT4/7 has been recognized as an essential component controlling the biogenesis of let-7 miRNAs in stem cells. Although uridylation has been generally implicated in miRNA degradation, the nuclease responsible has remained unknown. Here, we identify the Perlman syndrome-associated protein DIS3L2 as an oligo(U)-binding and processing exoribonuclease that specifically targets uridylated pre-let-7 in vivo. This study establishes DIS3L2 as the missing component of the LIN28-TUT4/7-DIS3L2 pathway required for the repression of let-7 in pluripotent cells.


Assuntos
Exorribonucleases/fisiologia , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Células-Tronco Embrionárias/enzimologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , MicroRNAs/genética , Ligação Proteica , Precursores de RNA/genética , Estabilidade de RNA , RNA Interferente Pequeno/genética
5.
Nat Commun ; 15(1): 2279, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480694

RESUMO

UV-crosslinking of protein and RNA in direct contacts has been widely used to study protein-RNA complexes while our understanding of the photo-crosslinking mechanisms remains poor. This knowledge gap is due to the challenge of precisely mapping the crosslink sites in protein and RNA simultaneously in their native sequence and structural contexts. Here we systematically analyze protein-RNA interactions and photo-crosslinking by bridging crosslinked nucleotides and amino acids mapped using different assays with protein-RNA complex structures. We developed a computational method PxR3D-map which reliably predicts crosslink sites using structural information characterizing protein-RNA interaction interfaces. Analysis of the informative features revealed that photo-crosslinking is facilitated by base stacking with not only aromatic residues, but also dipeptide bonds that involve glycine, and distinct mechanisms are utilized by different RNA-binding domains. Our work suggests protein-RNA photo-crosslinking is highly selective in the cellular environment, which can guide data interpretation and further technology development for UV-crosslinking-based assays.


Assuntos
Proteínas , RNA , Proteínas/metabolismo , RNA/metabolismo , Aminoácidos , Nucleotídeos/química , Reagentes de Ligações Cruzadas/química
6.
Nat Commun ; 15(1): 3839, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714659

RESUMO

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Assuntos
Sistemas CRISPR-Cas , Éxons , Íntrons , Splicing de RNA , RNA Guia de Sistemas CRISPR-Cas , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Splicing de RNA/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Íntrons/genética , Éxons/genética , Células HEK293 , Oligonucleotídeos Antissenso/genética , Atrofia Muscular Espinal/genética , Sequências Reguladoras de Ácido Nucleico/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
7.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662340

RESUMO

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is impeded by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically dead CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identified not only known SREs, but also a novel distal intronic splicing enhancer, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.

8.
Nat Commun ; 9(1): 2189, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875359

RESUMO

Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated during neurodevelopment. However, the precise timing of developmental splicing switches and the underlying regulatory mechanisms are poorly understood. Here we systematically analyze the temporal regulation of AS in a large number of transcriptome profiles of developing mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro. Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and these switches accurately define neuronal maturation stages. Integrative modeling suggests that these switches are under direct and combinatorial regulation by distinct sets of neuronal RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain the "immature" splicing program in early-switch exons, affecting numerous synaptic genes. These results provide new insights into the organization and regulation of the neurodevelopmental transcriptome.


Assuntos
Processamento Alternativo , Sistema Nervoso Central/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Animais , Diferenciação Celular/genética , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Modelos Neurológicos , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-28188674

RESUMO

The importance of RNA splicing in numerous cellular processes is well established. However, an underappreciated aspect is the ability of the spliceosome to recognize a set of very small (3-30 nucleotide, 1-10 amino acid) exons named microexons. Despite their small size, microexons and their regulation through alternative splicing have now been shown to play critical roles in protein and system function. Here we review the discovery of microexons over time and the mechanisms by which their splicing is regulated, including recent progress made through deep RNA sequencing. We also discuss the functional role of microexons in biology and disease. WIREs RNA 2017, 8:e1418. doi: 10.1002/wrna.1418 For further resources related to this article, please visit the WIREs website.


Assuntos
Éxons/genética , Regulação da Expressão Gênica , Precursores de RNA , Splicing de RNA , Animais , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA