Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
New Phytol ; 243(1): 145-161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736026

RESUMO

Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.


Assuntos
Diatomáceas , Ecossistema , Ecótipo , Luz , Fotobiorreatores , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/efeitos da radiação , Diatomáceas/fisiologia , Filogenia , Aclimatação , Clorofila/metabolismo , Fotossíntese/efeitos da radiação
2.
Mol Ecol ; 29(10): 1860-1872, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32293070

RESUMO

Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long-chain polyunsaturated fatty acids (LC-PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication-specific lipid metabolism. We conducted a 96-day feeding trial of domesticated and wild salmon fed diets based on FOs, VOs or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC-PUFA synthesis genes when given VOs. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC-PUFA levels but lower 18:3n-3 and 18:2n-6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC-PUFAs.


Assuntos
Domesticação , Metabolismo dos Lipídeos , Salmo salar , Transcriptoma , Animais , Óleos de Peixe , Metabolismo dos Lipídeos/genética , Salmo salar/genética
3.
Plant Physiol ; 181(3): 1257-1276, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467163

RESUMO

The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum tricornutum leads to a striking change of cell color from the normal brown to green. A 75% decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments and require a higher light intensity for saturation of photosynthesis. Accumulation of photoprotective pigments and light-harvesting complex stress-related proteins was not negatively affected in the mutant strains, but still the capacity for nonphotochemical quenching was lower compared with the wild type. In plants and green algae, ALB3 proteins interact with members of the chloroplast signal recognition particle pathway through a Lys-rich C-terminal domain. A novel conserved C-terminal domain was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same interaction partners as their plant/green algae homologs.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo
4.
Microb Ecol ; 79(3): 539-551, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31588957

RESUMO

We investigated the gut microbiota of rabbit fish larvae at three locations in Vietnam (ThuanAn-northern, QuangNam-intermediate, BinhDinh-southern sampling site) over a three-year period. In the wild, the first food for rabbit fish larvae remains unknown, while the juveniles and adults are herbivores, forming schools near the coasts, lagoons, and river mouths, and feeding mainly on filamentous algae. This is the first study on the gut microbiota of the wild fish larvae and with a large number of individuals analyzed spatially and temporally. The Clostridiales order was the most predominant in the gut, and location-by-location alpha diversity showed significant differences in Chao-1, Hill number 1, and evenness. Analysis of beta diversity indicated that the location, not year, had an effect on the composition of the microbiota. In 2014, the gut microbiota of fish from QuangNam was different from that in BinhDinh; in 2015, the gut microbiota was different for all locations; and, in 2016, the gut microbiota in ThuanAn was different from that in the other locations. There was a time-dependent trend in the north-south axis for the gut microbiota, which is considered to be tentative awaiting larger datasets. We found limited variation in the gut microbiota geographically and in time and strong indications for a core microbiome. Five and fifteen OTUs were found in 100 and 99% of the individuals, respectively. This suggests that at this life stage the gut microbiota is under strong selection due to a combination of fish-microbe and microbe-microbe interactions.


Assuntos
Microbioma Gastrointestinal , Perciformes/microbiologia , Migração Animal , Animais , Bactérias/genética , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA , Vietnã
5.
Plant Physiol ; 175(4): 1543-1559, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051196

RESUMO

Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae.


Assuntos
Organismos Aquáticos , Microalgas/metabolismo , Fósforo/metabolismo , Estramenópilas/fisiologia , Transporte Biológico/fisiologia , Carbono/metabolismo , Metabolismo dos Lipídeos , Lipídeos/classificação
6.
Appl Microbiol Biotechnol ; 101(12): 5149-5162, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28280868

RESUMO

The anammox activity of a freshwater anammox consortium was strongly inhibited at low-salinity level. Stepwise adaptation from 0 to 3 g NaCl L-1 took 153 days. Further adaptation to high-salinity concentration (from 3 to 30 g L-1) took only 40 days, and no inhibition was observed. A comprehensive insight into the salinity-induced successions of the total and the anammox communities was obtained by 454 pyrosequencing of 16S rRNA gene amplicons and statistical analysis. A major succession in the anammox community was observed at 3 g L-1 where the dominating population shifted from Candidatus Brocadia fulgida to Ca. Kuenenia stuttgartiensis. The latter dominated at high salinity and seemed to be essential for the high (˃96%) ammonium and nitrite removal efficiencies achieved. SIMPER analysis indicated that these two dominating anammox species explained most to the differences in community structure among samples and helped in identifying other important members at different salinities.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Consórcios Microbianos/fisiologia , Salinidade , Tolerância ao Sal , Aclimatação , Bactérias/genética , Água Doce/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/farmacologia
7.
Appl Microbiol Biotechnol ; 100(10): 4309-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27041691

RESUMO

Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.


Assuntos
Carotenoides/biossíntese , Ácidos Docosa-Hexaenoicos/biossíntese , Esqualeno/metabolismo , Estramenópilas/metabolismo , Engenharia Celular , Ácidos Graxos , Policetídeo Sintases/metabolismo , Análise de Sequência de DNA , Estramenópilas/genética
8.
Environ Microbiol ; 17(10): 3914-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25923170

RESUMO

Marine fish larvae are immature upon hatching, and share their environment with high numbers of bacteria. The microbial communities associated with developing fish larvae might be structured by other factors than those important in developing terrestrial animals. Here, we analysed the beta (ß)-diversity of the microbiota associated with developing cod larvae and compared it with the bacterial communities in water and live feed by applying pyrosequencing of bar coded v4 16S rDNA amplicons. A total of 15 phyla were observed in the cod larval microbiota. Proteobacteria was the most abundant, followed by Firmicutes, Bacteroidetes and Actinobacteria. The composition and diversity of the cod larval microbiota changed considerably with age. The temporal and spatial patterns of ß-diversity could not be explained by stochastic processes, and did not coincide with changes in the rearing conditions. Furthermore, the larval microbiota was highly distinct from the water and the live feed microbiota, particularly at early developmental stages. However, the similarity between larval and water microbiota increased with age. This study suggests that strong selection in the host structures the cod larval microbiota. The changes in community structure observed with increasing age can be explained by altered selection pressure due to development of the intestinal system.


Assuntos
Gadus morhua/embriologia , Gadus morhua/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Larva/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Peixes , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Plant Physiol ; 161(2): 1034-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23209127

RESUMO

The regulation of carbon metabolism in the diatom Phaeodactylum tricornutum at the cell, metabolite, and gene expression levels in exponential fed-batch cultures is reported. Transcriptional profiles and cell chemistry sampled simultaneously at all time points provide a comprehensive data set on carbon incorporation, fate, and regulation. An increase in Nile Red fluorescence (a proxy for cellular neutral lipids) was observed throughout the light period, and water-soluble glucans increased rapidly in the light period. A near-linear decline in both glucans and lipids was observed during the dark period, and transcription profile data indicated that this decline was associated with the onset of mitosis. More than 4,500 transcripts that were differentially regulated during the light/dark cycle are identified, many of which were associated with carbohydrate and lipid metabolism. Genes not previously described in algae and their regulation in response to light were integrated in this analysis together with proposed roles in metabolic processes. Some very fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to biosynthetic processes. Transcripts and cell chemistry data reflect the link between light energy availability and light energy-consuming metabolic processes. Our data confirm the spatial localization of processes in carbon metabolism to either plastids or mitochondria or to glycolysis/gluconeogenesis, which are localized to the cytosol, chloroplast, and mitochondria. Localization and diel expression pattern may be of help to determine the roles of different isoenzymes and the mining of genes involved in light responses and circadian rhythms.


Assuntos
Ciclo do Carbono/genética , Carbono/metabolismo , Diatomáceas/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Fotoperíodo , Aclimatação/genética , Aclimatação/efeitos da radiação , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/efeitos da radiação , Diatomáceas/genética , Diatomáceas/metabolismo , Perfilação da Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/efeitos da radiação , Glicólise/genética , Glicólise/efeitos da radiação , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Mitose/genética , Mitose/efeitos da radiação , Transportadores de Ácidos Monocarboxílicos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Plastídeos/genética , Plastídeos/metabolismo , Plastídeos/efeitos da radiação , Complexo Piruvato Desidrogenase/classificação , Complexo Piruvato Desidrogenase/genética
10.
Microorganisms ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399759

RESUMO

Production of European eel offspring has become a reality, but liquid diets during larval culture hold new challenges. This study focused on increasing food amounts without compromising well-being or healthy larvae-bacteria interactions. First-feeding larvae were fed two food amounts (Low = 0.5 mL food/L water vs. High = 1.5 mL food/L water) until 30 days post-hatch (dph). Results indicated that ~75% of larvae ingested the diet in both treatments, but upregulation of a stress/repair-related gene (hsp90) on 25 and 30 dph indicated nutritional inadequacy. Larvae fed a High amount of food were 3.68% bigger, while larvae in the Low-food group showed 45.2% lower gut fullness and upregulated expression of the gene encoding the "hunger hormone" ghrelin (ghrl), indicating signs of starvation. The High-food group larvae exhibited a healthier bacteriome with a higher abundance of potentially beneficial orders (Lactobacillales and Bacillales), whereas the Low-food group showed more potentially harmful orders (Vibrionales, Rhodobacterales, and Alteromonadales). While survival was initially lower in the High-food group, both treatments had comparable survival by the end of the experiment. In conclusion, feeding European eel larvae with High food amounts seemed beneficial, supported by increased gut fullness, reduced ghrl expression (no starvation), enhanced growth, and the presence of a healthier bacteriome.

11.
Mar Drugs ; 11(11): 4662-97, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24284429

RESUMO

The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs) for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.


Assuntos
Ácidos Docosa-Hexaenoicos/genética , Ácido Eicosapentaenoico/genética , Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Phaeophyceae/genética , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-3/metabolismo , Humanos , Phaeophyceae/metabolismo
12.
Sci Rep ; 13(1): 21032, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030754

RESUMO

Phage treatment is suggested as an alternative to antibiotics; however, there is limited knowledge of how phage treatment impacts resident bacterial community structure. When phages induce bacterial lysis, resources become available to the resident community. Therefore, the density of the target bacterium is essential to consider when investigating the effect of phage treatment. This has never been studied. Thus, we invaded microcosms containing a lake-derived community with Flavobacterium columnare strain Fc7 at no, low or high densities, and treated them with either the bacteriophage FCL-2, the antibiotic Penicillin or kept them untreated (3 × 3 factorial design). The communities were sampled over the course of one week, and bacterial community composition and density were examined by 16S rDNA amplicon sequencing and flow cytometry. We show that phage treatment had minor impacts on the resident community when the host F. columnare Fc7 of the phage was present, as it caused no significant differences in bacterial density α- and ß-diversity, successional patterns, and community assembly. However, a significant change was observed in community composition when the phage host was absent, mainly driven by a substantial increase in Aquirufa. In contrast, antibiotics induced significant changes in all community characteristics investigated. The most crucial finding was a bloom of γ-proteobacteria and a shift from selection to ecological drift dominating community assembly. This study investigated whether the amount of a bacterial host impacted the effect of phage treatment on community structure. We conclude that phage treatment did not significantly affect the diversity or composition of the bacterial communities when the phage host was present, but introduced changes when the host was absent. In contrast, antibiotic treatment was highly disturbing to community structure. Moreover, higher amounts of the bacterial host of the phage increased the contribution of stochastic community assembly and resulted in a feast-famine like response in bacterial density in all treatment groups. This finding emphasises that the invader density used in bacterial invasion studies impacts the experimental reproducibility. Overall, this study supports that phage treatment is substantially less disturbing to bacterial communities than antibiotic treatments.


Assuntos
Antibacterianos , Bacteriófagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Reprodutibilidade dos Testes
13.
Front Microbiol ; 14: 1177972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485532

RESUMO

The bacterial colonization of newly hatched fish is important for the larval development and health. Still, little is known about the ontogeny of the early microbiota of fish. Here, we conducted two independent experiments with yolk sac fry of Atlantic salmon that were (1) either reared conventionally, with the eggs as the only source for bacteria (egg-derived microbiota; EDM) or (2) hatched germ-free and re-colonized using lake water (lake-derived microbiota; LDM). First, we characterized the gut and skin microbiota at 6, 9, and 13 weeks post hatching based on extracted RNA. In the second experiment, we exposed fry to high doses of either a fish pathogen or a commensal bacterial isolate and sampled the microbiota based on extracted DNA. The fish microbiota differed strongly between EDM and LDM treatments. The phyla Proteobacteria, Bacteroidetes, and Actinobacteria dominated the fry microbiota, which was found temporarily dynamic. Interestingly, the microbiota of EDM fry was more stable, both between replicate rearing flasks, and over time. Although similar, the skin and gut microbiota started to differentiate during the yolk sac stage, several weeks before the yolk was consumed. Addition of high doses of bacterial isolates to fish flasks had only minor effects on the microbiota.

14.
Sci Rep ; 13(1): 19145, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932331

RESUMO

Excessive usage of antibiotics threatens the bacterial diversity in the microbiota of animals. An alternative to antibiotics that has been suggested to not disturb the microbiota is (bacterio)phage therapy. In this study, we challenged germ-free and microbially colonized yolk sac fry of Atlantic salmon with Flavobacterium columnare and observed that the mere presence of a microbiota protected the fish against lethal infection. We then investigated the effect of phage- or oxytetracycline treatment on fish survival and rearing water bacterial community characteristics using 16S rRNA gene amplicon sequencing. Phage treatment led to an increased survival of F. columnare-challenged fish and reduced the relative amounts of the pathogen in the water microbiota. In the absence of F. columnare, phage treatment did not affect the composition or the α-diversity of the rearing water microbiota. In the presence of the phage's host, phage treatment induced minor changes to the bacterial community composition, without affecting the α-diversity. Surprisingly, oxytetracycline treatment had no observable effect on the water microbiota and did not reduce the relative abundance of F. columnare in the water. In conclusion, we showed that phage treatment prevents mortality while not negatively affecting the rearing water microbiota, thus suggesting that phage treatment may be a suitable alternative to antibiotics. We also demonstrated a protective effect of the microbiota in Atlantic salmon yolk sac fry.


Assuntos
Microbiota , Oxitetraciclina , Terapia por Fagos , Salmo salar , Animais , Salmo salar/genética , Água , RNA Ribossômico 16S/genética , Antibacterianos
15.
PLoS One ; 18(7): e0288734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498931

RESUMO

European eel (Anguilla anguilla) is a commercially important species for fisheries and aquaculture in Europe and the attempt to close the lifecycle in captivity is still at pioneering stage. The first feeding stage of this species is characterized by a critical period between 20 to 24 days post hatch (dph), which is associated with mortalities, indicating the point of no return. We hypothesized that this critical period might also be associated with larvae-bacterial interactions and the larval immune status. To test this, bacterial community composition and expression of immune and stress-related genes of hatchery-produced larvae were explored from the end of endogenous feeding (9 dph) until 28 dph, in response to three experimental first-feeding diets (Diet 1, Diet 2 and Diet 3). Changes in the water bacterial community composition were also followed. Results revealed that the larval stress/repair mechanism was activated during this critical period, marked by an upregulated expression of the hsp90 gene, independent of the diet fed. At the same time, a shift towards a potentially detrimental larval bacterial community was observed in all dietary groups. Here, a significant reduction in evenness of the larval bacterial community was observed, and several amplicon sequence variants belonging to potentially harmful bacterial genera were more abundant. This indicates that detrimental larvae-bacteria interactions were likely involved in the mortality observed. Beyond the critical period, the highest survival was registered for larvae fed Diet 3. Interestingly, genes encoding for pathogen recognition receptor TLR18 and complement component C1QC were upregulated in this group, potentially indicating a higher immunocompetency that facilitated a more successful handling of the harmful bacteria that dominated the bacterial community of larvae on 22 dph, ultimately leading to better survival, compared to the other two groups.


Assuntos
Anguilla , Animais , Anguilla/genética , Larva/genética , Dieta/veterinária , Aquicultura , Expressão Gênica
16.
Ecology ; 93(8): 1795-801, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928408

RESUMO

Classical models of prey-predator interactions assume that per capita prey consumption is dependent on prey density alone and that prey consumption (functional response) and consumer proliferation (numerical response) operate on the same timescales and without time lags. Several modifications have been proposed for resolving this timescale discrepancy, including variants where the functional response depends on both prey and predator densities. A microcosm system with the rotifer Brachionus 'Nevada' feeding on the prasinophyte Tetraselmis sp. showed significant (P < 0.0005) increases in steady-state biomasses of both prey and predators with increasing carrying capacity (represented by total phosphorus of the growth medium), which is inconsistent with predictions based on the traditional prey-only-dependent functional response. We provide data indicating that surfaces where the predator can attach provide a high-quality habitat for rotifers, which can result in a predator-dependent functional response. We also show that partitioning between the attached and free-swimming habitats was fast compared to the timescale of the numerical response. When attached to surfaces, rotifers maximized net energy gain by avoiding the high cost of swimming and by increased food capture due to reduced viscous drag. A mathematical model with prey-dependent functional response and wall-attached and free-swimming fractions of the population describes our data adequately. We discuss the implications of this finding for extrapolating microcosm experiments to systems with other surface-to-volume ratios, and to what extent our findings may apply to other popular model organisms for prey-predator interaction.


Assuntos
Comportamento Predatório/fisiologia , Rotíferos/fisiologia , Animais , Biomassa , Ecossistema , Densidade Demográfica , Dinâmica Populacional
17.
FEMS Microbiol Ecol ; 98(10)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073495

RESUMO

It is well-documented that perturbation of the gut bacterial community can influence the reproductive rates of the host. Less is known about how natural ecological processes can change the bacterial composition in the gut and how such changes influence the reproductive rate of the host. Here, we provide novel experimental insights into such processes using the clonally reproducing water flea, Daphnia magna. A total of 20 replicate cultures were reared for 5 weeks (Phase 1) to allow for divergence of bacterial communities through stochastic processes (i.e. drift, founder effects, and/or colonization). Duplicate cultures created from each of these were reared for 21 days (Phase 2) while recording reproductive rates. There was a significant repeatability in reproductive rates between these duplicates, suggesting that divergence of the bacterial communities during Phase 1 translated into reproductive rate effects during Phase 2. This was further supported by significant differences in the relative abundance of gut bacteria (investigated by amplicon sequencing of a part of the 16S rRNA gene) between cultures with high and low reproductive rate in Phase 2. These results are consistent with the hypothesis that stochastic processes can cause natural variation in the bacterial composition in the gut, which in turn affect host reproductive rates.


Assuntos
Cladocera , Microbioma Gastrointestinal , Animais , Bactérias/genética , Cladocera/genética , Daphnia/genética , Daphnia/microbiologia , RNA Ribossômico 16S/genética
18.
Sci Rep ; 12(1): 19812, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396669

RESUMO

The microbial rearing quality influences the survival of marine larvae. Microbially matured water treatment systems (MMS) provide a more favourable rearing water microbiome than flow-through systems (FTS). It has previously been hypothesised, but not investigated, that initial rearing in MMS leaves a protective legacy effect in Atlantic cod larvae (Gadus morhua). We tested this hypothesis through a crossover 2 × 2 factorial experiment varying the rearing water treatment system (MMS vs FTS) and the microbial carrying capacity (+ /- added organic matter). At 9 days post-hatching, we switched the rearing water treatment system. By comparing switched and unswitched rearing tanks, we evaluated if legacy effects had been established in the larvae or their surrounding rearing water bacterial community. We analysed the bacterial communities with flow cytometry and 16S rRNA gene sequencing. We found no evidence that the initial rearing condition left a legacy effect in the communities by evaluating the bacterial community diversity and structure. Instead, the present rearing condition was the most important driver for differences in the rearing water microbiota. Furthermore, we found that MMS with high microbial carrying capacity appeared to seed a stable bacterial community to the rearing tanks. This finding highlights the importance of keeping a similar carrying capacity between the inlet and rearing water. Moreover, we reject the hypothesis that the initial rearing condition leaves a protective legacy effect in larvae, as the larval survival and robustness were linked to the present rearing condition. In conclusion, our results highlight the importance of maintaining a beneficial microbial rearing environment from hatching and throughout the larval rearing period.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Larva/microbiologia , RNA Ribossômico 16S/genética , Aquicultura/métodos , Bactérias/genética
19.
Front Cell Infect Microbiol ; 12: 1068302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817693

RESUMO

Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.


Assuntos
Microbiota , Salmo salar , Animais , Saco Vitelino , Mucosa , Aquicultura , Bactérias
20.
Lab Chip ; 21(10): 2027-2039, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008610

RESUMO

Phytoplankton are key primary producers at the bottom of the aquatic food chain. They are a highly diverse group of organisms essential for the functioning of our ecosystems and because of their characteristics, their biomass is considered for various commercial applications. A full appreciation of their abundance, diversity and potential is only feasible by using systems that enable simultaneous testing of strains and/or variables in a fast and easy way. A major bottleneck is the lack of a cost-effective method with the capacity for complex experimental set-ups that enable fast and reproducible screening and analysis. In this study, we present nanocosm, a versatile LED-based micro-scale photobioreactor (PBR) that allows simultaneous testing of multiple variables such as temperature and light within the same plate. Every well can be independently controlled for intensity, temporal variation and light type (RGB, white, UV). We show that our systems guarantee homogeneous conditions because of controlled temperature and evaporation and adjustments for light crosstalk. By ensuring controlled environmental conditions the nanocosm is suitable for running factorial experimental designs where each well can be used as an independent micro-PBR. To validate culture performances, we assess well-to-well reproducibility and our results show minimal well-to-well variability for all the conditions tested. Possible modes of operation and application are discussed together with future development of the system.


Assuntos
Ecossistema , Fotobiorreatores , Biomassa , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA