Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15685, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977727

RESUMO

This study presents a novel approach to fabricating interdigitated capacitive (IDC) touch sensors using graphite-based pencils on a wood substrate. The sensors were designed to detect touches and pressure variations, offering a cost-effective and environmentally friendly solution for sensor fabrication. The fabrication process involved abrasion of graphite pencils on a wooden substrate to create conductive traces, followed by the integration of interdigitated electrode structures. Capacitance variations resulting from touch interactions were investigated to calibrate sensor responses for tailored tasks. The sensitivity of the sensor was found to be 1.2 pF/kPa, highlighting its responsiveness to pressure variations. Additionally, the sensors were interfaced with an Arduino Uno microcontroller board to demonstrate practical applications, such as replicating arrow key functionality. Additionally, the sensors exhibit sensitivity to environmental factors, with the relative change in capacitance increasing from 0.1 to 0.65 as relative humidity ranges from 30 to 90%. Furthermore, variations in temperature from 30 to 60ºC result in a relative change in capacitance increasing to approximately 0.5. The results indicate the feasibility and versatility of using wood-based substrates and graphite-based pencils for fabricating IDC touch sensors, offering promising prospects for sustainable and accessible sensor technology.

2.
Sci Rep ; 14(1): 18177, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107342

RESUMO

Ferroelectric BaBi4Ti4O15 was prepared using solid-state calcination at 950 °C for four hours. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy were utilized to understand its microstructure and other structural aspects. Particle size was around < 1.5 µm. This oxide is able to demonstrate piezocatalysis and tribocatalysis as reflected in its dye degradation performance. This oxide showed piezocatalytic activity around 40% in 2 h and tribocatalytic activity around 90% in 12 h. The rate constant for the piezocatalytic reaction is 0.003 min-1 and for tribocatalytic reaction is 0.169 h-1. The rotation speed also affected the tribocatalytic activity of the oxide. Oxide showed 25%, 90%, and 94% tribocatalytic activity at 300, 500, and 700 rpm respectively. This material has demonstrated notable performance of catalysis under different types of mechanical energy sources and under different mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA