RESUMO
Full donor T-cell chimerism (FDTCC) after allogeneic stem cell transplant (allo-SCT) has been associated with improved outcomes in hematologic malignancy. We studied if donor human leukocyte antigen (HLA) mismatch improves achievement of FDTCC because mismatched HLA promotes donor T-cell proliferation where recipient T-cells had been impaired by previous treatment. Patients (N = 138) received allo-SCT with reduced-intensity conditioning (RIC) from 39 HLA mismatched donors (16 unrelated; 23 haploidentical) with post-transplant cyclophosphamide (PTCy) or 99 matched donors (21 siblings; 78 unrelated) with PTCy (N = 18) or non-PTCy (N = 81). Achievement of FDTCC by day 100 was higher with HLA mismatched donors than matched donors (82.1% vs. 27.3%, p < 00,001), which was further improved with 200 cGy total body irradiation (87.9%) or lymphoid (versus myeloid) malignancy (93.8%). Since all mismatched transplants used PTCy, FDTCC was higher with PTCy than non-PTCy (68.4% vs. 25.7%, p < 0.00001), but not in the matched transplant with PTCy (38.9%), negating PTCy as the primary driver. Lymphocyte recovery was delayed with PTCy than without (median on day + 30: 100 vs. 630/µL, p < 0.0001). The benefit of FDTCC was not translated into survival outcomes, especially in myeloid malignancies, possibly due to the insufficient graft-versus-tumor effects from the delayed lymphocyte recovery. Further studies are necessary to improve lymphocyte count recovery in PTCy transplants.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Quimerismo , Doença Enxerto-Hospedeiro/etiologia , Linfócitos T , Ciclofosfamida/uso terapêutico , Transplante de Células-Tronco/efeitos adversos , Antígenos HLA , Condicionamento Pré-Transplante/efeitos adversos , Doadores não Relacionados , Estudos RetrospectivosRESUMO
Primary graft failure (PGF) and multi-lineage cytopenia (MLC) increase the risk of nonrelapse mortality in allogeneic hematopoietic cell transplants (HCT). We evaluated the impact of post-transplant cyclophosphamide (PTCy) and splenomegaly on PGF and MLC for hematological malignancies. This study included patients with PTCy (N=84) and conventional graft-vs.-host disease prophylaxis (N=199). The occurrence of splenomegaly varied widely, ranging from 17.1â¯% (acute myeloid leukemia) to 66.7â¯% (myeloproliferative neoplasms). Ten patients (N=8 in the PTCy and N=2 in the non- PTCy) developed PGF, and 44 patients developed MLC (both N=22). PTCy and severe splenomegaly (≥20â¯cm) were risk factors for PGF (odds ratio (OR): 10.40, p<0.01 and 6.74, p=0.01 respectively). Moreover, severe splenomegaly was a risk factor for PGF in PTCy patients (OR: 10.20, p=0.01). PTCy (hazard ratio (HR) 2.09, p=0.02), moderate (≥15, <20â¯cm, HR 4.36, p<0.01), and severe splenomegaly (HR 3.04, p=0.01) were independent risk factors for MLC. However, in subgroup analysis in PTCy patients, only mild splenomegaly (≥12, <15â¯cm, HR 4.62, p=0.01) was a risk factor for MLC. We recommend all patients be screened for splenomegaly before HCT, and PTCy is cautioned in those with splenomegaly.