Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430897

RESUMO

The paper presents the application of a phase-sensitive optical time-domain reflectometer (phi-OTDR) in the field of urban infrastructure monitoring. In particular, the branched structure of the urban network of telecommunication wells. The encountered tasks and difficulties are described. The possibilities of usage are substantiated, and the numerical values of the event quality classification algorithms applied to experimental data are calculated using machine learning methods. Among the considered methods, the best results were shown by convolutional neural networks, with a probability of correct classification as high as 98.55%.

2.
BioData Min ; 8: 33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535058

RESUMO

BACKGROUND: Connectivity networks, which reflect multiple interactions between genes and proteins, possess not only a descriptive but also a predictive value, as new connections can be extrapolated and tested by means of computational analysis. Integration of different types of connectivity data (such as co-expression and genetic interactions) in one network has proven to benefit 'guilt by association' analysis. However predictive values of connectives of different types, that had their specific functional meaning and topological characteristics were not obvious, and have been addressed in this analysis. METHODS: eQTL data for 3 experimental C.elegans age groups were retrieved from WormQTL. WormNet has been used to obtain pair-wise gene interactions. The Shortest Path Function (SPF) has been adopted for statistical validation of the co-expressed gene clusters and for computational prediction of their potential gene expression regulators from a network context. A new SPF-based algorithm has been applied to genetic interactions sub-networks adjacent to the clusters of co-expressed genes for ranking the most likely gene expression regulators causal to eQTLs. RESULTS: We have demonstrated that known co-expression and genetic interactions between C. elegans genes can be complementary in predicting gene expression regulators. Several algorithms were compared in respect to their predictive potential in different network connectivity contexts. We found that genes associated with eQTLs are highly clustered in a C. elegans co-expression sub-network, and their adjacent genetic interactions provide the optimal functional connectivity environment for application of the new SPF-based algorithm. It was successfully tested in the reverse-prediction analysis on groups of genes with known regulators and applied to co-expressed genes and experimentally observed expression quantitative trait loci (eQTLs). CONCLUSIONS: This analysis demonstrates differences in topology and connectivity of co-expression and genetic interactions sub-networks in WormNet. The modularity of less continuous genetic interaction network does not correspond to modularity of the dense network comprised by gene co-expression interactions. However the genetic interaction network can be used much more efficiently with the SPF method in prediction of potential regulators of gene expression. The developed method can be used for validation of functional significance of suggested eQTLs and a discovery of new regulatory modules.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24329224

RESUMO

We study the planar matching problem, defined by a symmetric random matrix with independent identically distributed entries, taking values zero and one. We show that the existence of a perfect planar matching structure is possible only above a certain critical density, p(c), of allowed contacts (i.e., of ones). Using a formulation of the problem in terms of Dyck paths and a matrix model of planar contact structures, we provide an analytical estimation for the value of the transition point, p(c), in the thermodynamic limit. This estimation is close to the critical value, p(c)≈0.379, obtained in numerical simulations based on an exact dynamical programming algorithm. We characterize the corresponding critical behavior of the model and discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition in the context of random RNA secondary structure formation. In particular, we provide strong evidence supporting the conjecture that the molten-glass transition at T=0 occurs at p(c).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA