Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Lett ; 331: 42-52, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464236

RESUMO

Synthetic cathinones abuse remains a serious public health problem. Kidney injury has been reported in intoxications associated with synthetic cathinones, but the molecular mechanisms involved have not been explored yet. In this study, the potential in vitro nephrotoxic effects of four commonly abused cathinone derivatives, namely pentedrone, 3,4-dimethylmethcatinone (3,4-DMMC), methylone and 3,4-methylenedioxypyrovalerone (MDPV), were assessed in the human kidney HK-2 cell line. All four derivatives elicited cell death in a concentration- and time-dependent manner, in the following order of potency: 3,4-DMMC >> MDPV > methylone ≈ pentedrone. 3,4-DMMC and methylone were selected to further elucidate the mechanisms behind synthetic cathinones-induced cell death. Both drugs elicited apoptotic cell death and prompted the formation of acidic vesicular organelles and autophagosomes in HK-2 cells. Moreover, the autophagy inhibitor 3-methyladenine significantly potentiated cell death, indicating that autophagy may serve as a cell survival mechanism that protects renal cells against synthetic cathinones toxicity. Both drugs triggered a rise in reactive oxygen and nitrogen species formation, which was completely prevented by antioxidant treatment with N­acetyl­L­cysteine or ascorbic acid. Importantly, these antioxidant agents significantly aggravated renal cell death induced by cathinone derivatives, most likely due to their autophagy-blocking properties. Taken together, our results support an intricate control of cell survival/death modulated by oxidative stress, apoptosis and autophagy in synthetic cathinones-induced renal injury.


Assuntos
Alcaloides/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Drogas Ilícitas/toxicidade , Rim/efeitos dos fármacos , Alcaloides/química , Benzodioxóis/química , Benzodioxóis/toxicidade , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Rim/metabolismo , Rim/patologia , Metanfetamina/análogos & derivados , Metanfetamina/química , Metanfetamina/toxicidade , Metilaminas/química , Metilaminas/toxicidade , Pentanonas/química , Pentanonas/toxicidade , Pirrolidinas/química , Pirrolidinas/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Catinona Sintética
2.
Toxicol In Vitro ; 29(5): 987-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863214

RESUMO

Piperazine derived drugs emerged on the drug market in the last decade. The aim of this study was to investigate in vitro the potential hepatotoxicity of the designer drugs N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP), 1-(4-methoxyphenyl)piperazine (MeOPP) and 1-(3,4-methylenedioxybenzyl)piperazine (MDBP) in two human hepatic cell lines (HepaRG and HepG2) and in primary rat hepatocytes. Cell death was evaluated by the MTT assay, after 24 h-incubations. Among the tested drugs, TFMPP was the most cytotoxic. HepaRG cells and primary hepatocytes revealed to be the most and the least resistant cellular models, respectively. To ascertain whether the CYP450 metabolism could explain their higher susceptibility, primary hepatocytes were co-incubated with the piperazines and the CYP450 inhibitors metyrapone and quinidine, showing that CYP450-mediated metabolism contributes to the detoxification of these drugs. Additionally, the intracellular contents of reactive species, ATP, reduced (GSH) and oxidized (GSSG) glutathione, changes in mitochondrial membrane potential (Δψm) and caspase-3 activation were further evaluated in primary cells. Overall, an increase in reactive species formation, followed by intracellular GSH and ATP depletion, loss of Δψm and caspase-3 activation was observed for all piperazines, in a concentration-dependent manner. In conclusion, piperazine designer drugs produce hepatic detrimental effects that can vary in magnitude among the different analogues.


Assuntos
Drogas Desenhadas/toxicidade , Hepatócitos/efeitos dos fármacos , Piperazinas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450/farmacologia , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metirapona/farmacologia , Quinidina/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
3.
Curr Med Chem ; 19(33): 5601-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22856659

RESUMO

Cocaine is a potent psychoactive illicit substance and its abuse represents a major health burden worldwide. The pharmacodynamics and toxicity of cocaine have been extensively documented, and are generally associated to its affinity towards neurotransmitters transporters and several receptors. However, drug-related formation of reactive compounds, as is the case of pro-oxidant reactive species, and interaction at molecular level is still an understudied matter. The involvement of oxidative stress (OS) in cocaine-induced toxicity has been reported in both human and animal models, in several organs and systems, including heart, liver, kidney, and central nervous system (CNS). Cytochrome P450 (CYP450)-mediated cocaine metabolism yields the reactive pro-oxidant compound norcocaine (NCOC) and further oxidative metabolites. Special emphasis should be given to the stable radical norcocaine nitroxide (NCOC-NO·), which plays a key role in cocaine-induced hepatotoxicity, either by entering a futile redox cycle with an N-oxidative metabolite, or by being further oxidized to a highly reactive ion. In fact, cocaine-induced generation of reactive oxygen species (ROS) and consequent OS has been postulated based on the reactivity of cocaine N-oxidative metabolites. Depletion of cellular antioxidant defenses and impairment of mitochondrial respiration have also been considered important causes of ROS production, and subsequent cell death mediated by cocaine. The present review provides a thorough description of the current knowledge on cocaine oxidative metabolism and its role on drug-induced liver and kidney damage.


Assuntos
Cocaína/efeitos adversos , Inibidores da Captação de Dopamina/efeitos adversos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Espécies Reativas de Oxigênio/efeitos adversos , Animais , Cocaína/análogos & derivados , Cocaína/metabolismo , Inibidores da Captação de Dopamina/química , Inibidores da Captação de Dopamina/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA