Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Toxicol Pathol ; 48(1): 152-173, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181992

RESUMO

Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.


Assuntos
Substâncias Perigosas/toxicidade , Doenças do Sistema Nervoso Periférico , Animais , Axônios , Humanos , Neurônios , Testes de Toxicidade
2.
Int Arch Occup Environ Health ; 92(6): 873-881, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955093

RESUMO

OBJECTIVES: Urinary excretion of 2,5-hexanedione is currently used to estimate the exposure levels of hexane occurring to an individual during the previous work shift. However, because hexane exposures and urinary 2,5-hexanedione levels can vary considerably from day to day, and subchronic to chronic exposures to hexane are required to produce neuropathy, this biomarker may not accurately reflect the risk of an individual for developing hexane neuropathy. This investigation examines the potential of hexane-derived pyrrole adducts produced on globin and plasma proteins as markers for integrating cumulative exposures. Because the pyrrole markers incorporate bioactivation of hexane to 2,5-hexandione and the initial step of protein adduction involved in hexane-induced neuropathy, they potentially can serve as biomarkers of effect through reflecting pathogenetic events within the nervous system. Additionally, pyrrole formation is an irreversible reaction suggesting that hexane-derived protein pyrroles can be used to assess cumulative exposures to provide a better characterization of individual susceptibilities. METHODS: To examine the utility of the proposed markers, blood samples were obtained from eleven workers who used hexane for granulating metal powders in a slurry to produce metal machining die tools and four non-exposed volunteers. Globin and plasma were isolated, and the proteins were digested using pepsin, reacted with Ehrlich's reagent and the level of pyrrole adducts were determined by absorbance at 530 nm. To determine the dose-response curve and dynamic range of the assay, erythrocytes were incubated with a range of 2,5-hexanedione concentrations and the net absorbance at 530 nm of isolated globin was measured. RESULTS: Pyrrole was detected in both the globin and plasma samples of the workers exposed to hexane and the levels of pyrroles in plasma were positively correlated with the levels of pyrroles in globin for most of the workers. CONCLUSIONS: This investigation demonstrates that detectable levels of hexane-derived protein pyrrole adducts are produced on peripheral proteins following occupational exposures to hexane and supports the utility of measuring pyrroles for integrating cumulative exposures to hexane.


Assuntos
Globinas/metabolismo , Hexanos/metabolismo , Plasma/química , Pirróis/sangue , Biomarcadores/sangue , Globinas/química , Humanos , Exposição Ocupacional/efeitos adversos , Pirróis/metabolismo
3.
Toxicol Pathol ; 46(8): 1028-1036, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295173

RESUMO

Peripheral nervous system (PNS) toxicity is a frequent adverse effect encountered in patients treated with certain therapeutics (e.g., antiretroviral drugs, cancer chemotherapeutics), in occupational workers exposed to industrial chemicals (e.g., solvents), or during accidental exposures to household chemicals and/or environmental agents (e.g., pesticides). However, the literature and expertise needed for the effective design, conduct, analysis, and reporting of safety studies to identify and define PNS toxicity are hard to find. This half-day course familiarized participants with basic PNS biology; causes and mechanisms of PNS pathology; classic methods and current best practice recommendations for PNS sampling, preparation, and evaluation; and examples of commonly observed lesions and artifacts. Three concluding case presentations synthesized information from the prior technical lectures by presenting real-world examples of lesions caused by drugs and chemicals to demonstrate how PNS toxicity may be addressed in evaluating product safety during nonclinical studies. Topics emphasized comparative and correlative data among animal species used in toxicity studies and clinical evaluation in humans in order to facilitate the translation of animal data into human risk assessment with respect to PNS toxicologic pathology.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Humanos
4.
Magn Reson Med ; 75(3): 1341-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25920491

RESUMO

PURPOSE: Several studies have shown strong correlations between myelin content and T1 within the brain, and have even suggested that T1 can be used to estimate myelin content. However, other micro-anatomical features such as compartment size are known to affect longitudinal relaxation rates, similar to compartment size effects in porous media. METHODS: T1 measurements were compared with measured or otherwise published axon size measurements in white matter tracts of the rat spinal cord, rat brain, and human brain. RESULTS: In both ex vivo and in vivo studies, correlations were present between the relaxation rate 1/T1 and axon size across regions of rat spinal cord with nearly equal myelin content. CONCLUSION: While myelination is likely the dominant determinant of T1 in white matter, variations in white matter microstructure, independent of myelin volume fraction, may also be reflected in T1 differences between regions or subjects.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Animais , Axônios/ultraestrutura , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Substância Branca/citologia , Substância Branca/ultraestrutura
5.
J Biol Chem ; 289(31): 21205-16, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939843

RESUMO

The p75 neurotrophin receptor (p75(NTR)) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75(NTR) has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75(NTR) signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75(NTR-/-) mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75(NTR) via a ligand-independent mechanism. Previous studies have established that proteolysis of p75(NTR) by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75(NTR)-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75(NTR). Pharmacological blockade of p75(NTR) proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75(NTR) is necessary for oxidant-induced neurodegeneration. In vivo, p75(NTR-/-) mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75(NTR), resulting in axonal fragmentation and neuronal death.


Assuntos
Apoptose/fisiologia , Axônios , Estresse Oxidativo , Receptores de Fator de Crescimento Neural/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento , Testes de Campo Visual
6.
Chem Res Toxicol ; 28(4): 682-90, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25714994

RESUMO

Ubiquitin activating enzyme E1 plays a pivotal role in ubiquitin based protein signaling through regulating the initiating step of the cascade. Previous studies demonstrated that E1 is inhibited by covalent modification of reactive cysteines contained within the ubiquitin-binding groove and by conditions that increase oxidative stress and deplete cellular antioxidants. In this study, we determined the relative contribution of covalent adduction and oxidative stress to E1 inhibition produced by ziram and sodium N,N-dimethyldithiocarbamate (DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC, both dithiocarbamates significantly decreased E1 activity, with ziram demonstrating greater potency. Ziram increased intracellular levels of zinc and copper, DMDC increased intracellular levels of only copper, and both dithiocarbamates enhanced oxidative injury evidenced by elevated levels of protein carbonyls and expression of heme oxygenase-1. To assess the contribution of intracellular copper transport to E1 inhibition, coincubations were performed with the copper chelator triethylenetetramine hydrochloride (TET). TET significantly protected E1 activity for both of the dithiocarbamates and decreased the associated oxidative injury in HEK293 cells as well as prevented dithiocarbamate-mediated lipid peroxidation assayed using an ethyl aracidonate micelle system. Because TET did not completely ameliorate intracellular transport of copper or zinc for ziram, TET apparently maintained E1 activity through its ability to diminish dithiocarbamate-mediated oxidative stress. Experiments to determine the relative contribution of elevated intracellular zinc and copper were performed using a metal free incubation system and showed that increases in either metal were sufficient to inhibit E1. To evaluate the utility of the HEK293 in vitro system for screening environmental agents, a series of additional pesticides and metals was assayed, and eight agents that produced a significant decrease and five that produced a significant increase in activated E1 were identified. These studies suggest that E1 is a sensitive redox sensor that can be modulated by exposure to environmental agents and can regulate downstream cellular processes.


Assuntos
Dimetilditiocarbamato/toxicidade , Fungicidas Industriais/toxicidade , Metais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ubiquitina/metabolismo , Ziram/toxicidade , Transporte Biológico , Células HEK293 , Humanos
7.
J Neurochem ; 127(6): 837-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23786526

RESUMO

Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.


Assuntos
Azepinas/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Herbicidas/toxicidade , Tiocarbamatos/toxicidade , Animais , Caenorhabditis elegans/citologia , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Dose Letal Mediana , Estresse Oxidativo , Ácido gama-Aminobutírico/metabolismo
8.
Chem Res Toxicol ; 25(11): 2310-21, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-22874009

RESUMO

Previous studies have shown ubiquitin activating enzyme E1 to be sensitive to adduction through both Michael addition and SN(2) chemistry in vitro. E1 presents a biologically important putative protein target for adduction due to its role in initiating ubiquitin based protein processing and the involvement of impaired ubiquitin protein processing in two types of familial Parkinson's disease. We tested whether E1 is susceptible to xenobiotic-mediated electrophilic adduction in vivo and explored the potential contribution of E1 adduction to neurodegenerative events in an animal model. N,N-Diethyldithiocarbamate (DEDC) was administered to rats using a protocol that produces covalent cysteine modifications in vivo, and brain E1 protein adducts were characterized and mapped using shotgun LC-MS/MS. E1 activity, global and specific protein expression, and protein carbonyls were used to characterize cellular responses and injury in whole brain and dorsal striatal samples. The data demonstrate that DEDC treatment produced S-(ethylaminocarbonyl) adducts on Cys234 and Cys179 residues of E1 and decreased the levels of activated E1 and total ubiquitinated proteins. Proteomic analysis of whole brain samples identified expression changes for proteins involved in myelin structure, antioxidant response, and catechol metabolism, systems often disrupted in neurodegenerative disease. Our studies also delineated localized injury within the striatum as indicated by decreased levels of tyrosine hydroxylase, elevated protein carbonyl content, increased antioxidant enzyme and α-synuclein expression, and enhanced phosphorylation of tau and tyrosine hydroxylase. These data are consistent with E1 having similar susceptibility to adduction in vivo as previously reported in vitro and support further investigation into environmental agent adduction of E1 as a potential contributing factor to neurodegenerative disease. Additionally, this study supports the predictive value of in vitro screens for identifying sensitive protein targets that can be used to guide subsequent in vivo experiments.


Assuntos
Corpo Estriado/efeitos dos fármacos , Ditiocarb/análogos & derivados , Inibidores Enzimáticos/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Animais , Corpo Estriado/lesões , Corpo Estriado/metabolismo , Ditiocarb/administração & dosagem , Ditiocarb/química , Ditiocarb/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Masculino , Modelos Moleculares , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Enzimas Ativadoras de Ubiquitina/isolamento & purificação , Enzimas Ativadoras de Ubiquitina/metabolismo
9.
Magn Reson Med ; 64(3): 688-97, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20806376

RESUMO

Chromium--Cr(VI) in the form of potassium dichromate--has been shown to specifically enhance white matter signal. The proposed mechanism for this enhancement is reduction of diamagnetic Cr(VI) to paramagnetic chromium species by oxidizable myelin lipids. The purpose of the study herein was to better understand the microanatomical basis of this enhancement (i.e., the relative enhancement of myelin, intra-axonal, and extra-axonal water). Toward this end, integrated T(1)-T(2) measurements were performed in potassium dichromate loaded (hereafter referred to as chromated) rat brains, rat optic nerve samples, and frog sciatic nerve samples ex vivo. In control optic nerve and white matter, two T(1)-T(2) components were resolved, representing myelin and nonmyelin water (intra- and extra-axonal water). Following chromation, three T(1)-T(2) components were resolved in these same tissues. Results from similar measurements in sciatic nerve-all three components are resolvable in control and chromated samples-and quantitative histologic analysis suggest that this additional T(1)-T(2) component is due to a splitting of the nonmyelin water component into intra- and extra-axonal water components. This compartment-specific enhancement may provide unique contrast for MR histology, as well as allow one to probe the compartmental basis of various contrast mechanisms in neural tissue.


Assuntos
Cromo , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/química , Fibras Nervosas Mielinizadas/ultraestrutura , Nervo Óptico/anatomia & histologia , Nervo Óptico/química , Animais , Meios de Contraste , Ratos , Ratos Sprague-Dawley , Xenopus laevis
10.
Magn Reson Med ; 63(4): 902-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20373391

RESUMO

Quantitative MRI measures of multiexponential T(2) relaxation and magnetization transfer were acquired from six samples of excised and fixed rat spinal cord and compared with quantitative histology. MRI and histology data were analyzed from six white matter tracts, each of which possessed unique microanatomic characteristics (axon diameter and myelin thickness, in particular) but a relatively constant volume fraction of myelin. The results indicated that multiexponential T(2) relaxation characteristics varied substantially with variation of microanatomy, while the magnetization transfer characteristics remained close to constant. The most-often-cited multiexponential T(2) relaxation metric, myelin water fraction, varied by almost a factor of 2 between two regions with myelin volume fractions that differed by only approximately 12%. Based on the quantitative histology, the proposed explanation for this variation was intercompartmental water exchange, which caused the underestimation of myelin water fraction and T(2) values and is, presumably, a greater factor in white matter regions where axons are small and myelin is thin. In contrast to the multiexponential T(2) relaxation observations, magnetization transfer metrics were relatively constant across white matter tracts and concluded to be relatively insensitive to intercompartmental water exchange.


Assuntos
Imageamento por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Medula Espinal/ultraestrutura , Animais , Processamento de Imagem Assistida por Computador , Masculino , Ratos , Ratos Sprague-Dawley , Cloreto de Tolônio
11.
Toxicol Appl Pharmacol ; 239(1): 71-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19467251

RESUMO

Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase alpha, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET(2)) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate-mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET(2). Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury.


Assuntos
Cobre/metabolismo , Ditiocarb/toxicidade , Bainha de Mielina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Glutationa Transferase/biossíntese , Heme Oxigenase (Desciclizante)/biossíntese , Isoenzimas/biossíntese , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/enzimologia , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1
12.
Chem Res Toxicol ; 22(1): 218-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19093748

RESUMO

Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate's nitrogen substituents influences the lipophilicity of the copper complexes that it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generated dithiocarbamate-copper complexes that were lipid- and water-soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord, and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities, and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined, and the quantity of protein carbonyls was measured to assess levels of oxidative stress and injury. The data provided evidence that dithiocarbamate-copper complexes are redox active and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid-soluble copper complex, significant increases in copper accumulation, oxidative stress, and myelin injury were produced by N,N-diethyldithiocarbamate but not by sarcosine dithiocarbamate.


Assuntos
Cobre/metabolismo , Ditiocarb/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Sarcosina/análogos & derivados , Tiocarbamatos/química , Tiocarbamatos/toxicidade , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Ditiocarb/administração & dosagem , Etilenobis (ditiocarbamatos)/toxicidade , Masculino , Malondialdeído/metabolismo , Espectrometria de Massas , Bainha de Mielina/patologia , Nitrogênio/química , Estresse Oxidativo/efeitos dos fármacos , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Sarcosina/administração & dosagem , Sarcosina/toxicidade , Tiocarbamatos/administração & dosagem
13.
J Neuropathol Exp Neurol ; 67(1): 68-77, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18172410

RESUMO

Selenoprotein P (Sepp1) is involved in selenium homeostasis. Mice with a deletion of Sepp1, replacement of it by the shortened form Sepp1(Delta240-361), or deletion of its receptor apolipoprotein E receptor 2 develop severe neurologic dysfunction when fed low-selenium diet. Because the brainstems of Sepp1(-/-) mice had been observed to contain degenerated axons, a study of these 3 strains was made under selenium-deficient and high-selenium (control) conditions. Selenium-deficient wild-type mice were additional controls. Serial sections of the brain were evaluated with amino cupric silver degeneration and anti-glial fibrillary acidic protein stains. All 3 strains with altered Sepp1 metabolism developed severe axonal injury when fed selenium deficient diet. This injury was mitigated by high-selenium diet and was absent from selenium-deficient wild-type mice. Injury was most severe in Sepp1(-/-) mice, with staining in at least 6 brain regions. Injury in Sepp1(Delta240-361) and apolipoprotein E receptor 2 mice was less severe and occurred only in areas injured in Sepp1(-/-) mice, suggesting a common selenium-related etiology. Affected brain regions were primarily associated with auditory and motor functions, consistent with the clinical signs. Those areas have high metabolic rates. We conclude that interference with Sepp1 function damages auditory and motor areas, at least in part by restricting selenium supply to the brain regions.


Assuntos
Degeneração Neural/genética , Degeneração Neural/patologia , Receptores de Lipoproteínas/deficiência , Selenoproteína P/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Deleção de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento Tridimensional/métodos , Proteínas Relacionadas a Receptor de LDL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/fisiopatologia , Selenoproteína P/genética , Coloração pela Prata/métodos
14.
Toxicol Sci ; 98(2): 427-35, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17517825

RESUMO

1-Bromopropane (1-BP), an alternative to ozone-depleting solvents, is a neuro and reproductive toxicant in animals and humans. In this study, the dose responses for urinary AcPrCys and S-propylcysteine (PrCys) adducts on globin and neurofilaments were determined as a function of 1-BP exposure level and duration in the rat; and globin PrCys adducts and urinary AcPrCys were quantified in samples obtained from workers in a 1-BP production facility. Rats were exposed to 1-BP by inhalation for 2 weeks at 0, 50, 200, or 800 ppm and to 1-BP at 0 or 50 ppm for 4 weeks. After the 4-week exposures ended, half of the animals were euthanized immediately and half euthanized 8 days later. Urinary AcPrCys was measured using liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatograph-mass spectrometry (GC/MS); and PrCys adducts were determined on globin and neurofilaments using LC/MS/MS. In rats, PrCys adduct and urinary AcPrCys levels demonstrated a linear dose response relative to exposure level. PrCys globin adducts demonstrated a linear cumulative dose response over the 4-week exposure period. Elimination of AcPrCys appeared biphasic with detectable levels still present in urine up to 8 days postexposure. A significant increase in globin PrCys adducts was observed in the 1-BP workers relative to control workers; and urinary AcPrCys increased with increasing 1-BP ambient exposure levels. The results of these studies demonstrate the ability of 1-BP to covalently modify proteins in vivo and support the potential of urinary AcPrCys and globin PrCys adducts to serve as biomarkers of 1-BP exposure in humans.


Assuntos
Acetilcisteína/análogos & derivados , Cisteína/análogos & derivados , Globinas/metabolismo , Solventes/toxicidade , Acetilcisteína/urina , Poluentes Ocupacionais do Ar/toxicidade , Animais , Biomarcadores/metabolismo , Cisteína/metabolismo , Monitoramento Ambiental , Feminino , Humanos , Hidrocarbonetos Bromados/toxicidade , Exposição por Inalação , Masculino , Exposição Ocupacional , Ligação Proteica , Ratos , Ratos Wistar
15.
Neurotoxicology ; 28(3): 645-54, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17350098

RESUMO

Standard light microscope histological evaluation of peripheral nerve lesions has been used routinely to assess peripheral nerve demyelination; however, the development of magnetic resonance (MR) methodology for assessing peripheral nerve may provide complementary information, with less expense and in less time than nerve histology methods. In this study, the utility of multicomponent NMR T(2) relaxation analysis for assessing myelin injury in toxicology studies was examined using two dithiocarbamates, N,N-diethyldithiocarbamate (DEDC) and pyrrolidine dithiocarbamate (PDTC), known to produce myelin injury and elevate copper in the nervous system. T(2) analysis was used in conjunction with standard histological methods to assess myelin injury and determine if dithiocarbamate-mediated copper accumulation in peripheral nerve was associated with more severe myelin lesions. Male Sprague-Dawley rats were administered i.p. DEDC for 8 weeks and maintained on either a diet containing normal (13 ppm) or elevated (200 ppm) copper. Another group of male Sprague-Dawley rats was administered oral PDTC and a 200 ppm copper diet, with controls given only the 200 ppm copper diet, for 47 weeks. Following exposures, the morphology of sciatic nerve was evaluated using light microscopy and multicomponent T(2) analysis of excised fixed nerves; and copper levels in sciatic nerve were determined using ICP-AES. Light microscopy demonstrated the presence of a primary myelinopathy in dithiocarbamate-exposed rats characterized by intramyelinic edema, demyelination, and secondary axonal degeneration. Both the nerve copper level and number of degenerated axons, as ascertained by ICP-AES and microscopy, respectively, were augmented by dietary copper supplementation in conjunction with administration of DEDC or PDTC. T(2) analysis revealed a decreased contribution from the shortest T(2) component in multicomponent T(2) spectra obtained from animals administered DEDC or PDTC, consistent with decreased myelin content; and the decrease of the myelin water component was inversely correlated to the levels of nerve copper and myelin lesion counts. Also, the T(2) analysis showed reduced variability compared to histological assessment. These studies support multicomponent T(2) analysis as a complementary method to light microscopic evaluations that may also be applicable to in vivo assessments.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Pirrolidinas/toxicidade , Tiocarbamatos/toxicidade , Animais , Corantes , Cobre/metabolismo , Injeções Intraperitoneais , Imageamento por Ressonância Magnética , Masculino , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/química , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Espectrofotometria Atômica , Cloreto de Tolônio
16.
Toxicol Sci ; 89(2): 485-94, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16291825

RESUMO

The neurotoxic hazard of a dithiocarbamate is influenced by route of exposure and acid stability of the dithiocarbamate. As an example, oral administration of the acid labile dithiocarbamate N,N-diethyldithiocarbamate (DEDC) causes a central-peripheral axonopathy thought to result from acid-promoted decomposition to CS2 in the stomach. In contrast, parenteral administration of DEDC, which bypasses the acidic environment of the stomach, causes a primary demyelination that is thought to be mediated through the intact parent dithiocarbamate. The relative acid stability of pyrrolidine dithiocarbamate (PDTC) suggests that a significant portion of a dose can be absorbed intact following oral exposure with the potential to produce a primary myelin injury. The present study was performed to characterize the neurotoxicity of PDTC and evaluate the possible role of copper in dithiocarbamate-mediated demyelination. Male Sprague Dawley rats were administered PDTC in drinking water and given either a normal- or high-copper diet for 18, 47, or 58 weeks. Examination of peripheral nerve by light microscopy and electron microscopy at the end of exposures revealed primary myelin lesions and axonal degeneration in the PDTC groups, with a significant increase in the severity of several lesions observed for the PDTC, high-copper group relative to the PDTC normal-copper diet. ICP-AES metal analysis determined that the PDTC groups had significantly increased brain copper, and at 58 weeks a significant increase in copper was seen in the sciatic nerve of PDTC high-copper animals relative to PDTC normal-copper diet animals. Although RP-HPLC analysis could not detect globin alkylaminocarbonyl cysteine modifications analogous to those seen with parenteral DEDC, LC/MS/MS identified (pyrrolidin-1-yl carbonyl)cysteine adducts on PDTC-exposed rat globin. These findings are consistent with previous studies supporting the ability of acid-stable dithiocarbamates to mediate myelin injury following oral exposure. The greater severity of lesions associated with dietary copper supplementation and elevated copper levels in nerve also suggests that perturbation of copper homeostasis may contribute to the development of myelin lesions.


Assuntos
Cobre/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Dieta , Poluentes Ambientais/toxicidade , Nervos Periféricos/efeitos dos fármacos , Pirrolidinas/toxicidade , Tiocarbamatos/toxicidade , Administração Oral , Animais , Cromatografia Líquida , Cobre/administração & dosagem , Cobre/sangue , Doenças Desmielinizantes/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Globinas/análise , Masculino , Espectrometria de Massas , Microscopia Eletrônica , Nervos Periféricos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/ultraestrutura , Distribuição Tecidual
17.
Toxicol Appl Pharmacol ; 207(2 Suppl): 245-50, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16002115

RESUMO

Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions is consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.


Assuntos
Dissulfeto de Carbono/toxicidade , Sistema Nervoso/efeitos dos fármacos , Óxidos de Enxofre/toxicidade , Administração por Inalação , Animais , Dissulfeto de Carbono/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Óxidos de Enxofre/administração & dosagem
18.
Environ Health Perspect ; 112(13): 1319-25, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345346

RESUMO

We reported recently that 1-bromopropane (1-BP; n-propylbromide, CAS Registry no. 106-94-5), an alternative to ozone-depleting solvents, is neurotoxic and exhibits reproductive toxicity in rats. The four most recent case reports suggested possible neurotoxicity of 1-BP in workers. The aim of the present study was to establish the neurologic effects of 1-BP in workers and examine the relationship with exposure levels. We surveyed 27 female workers in a 1-BP production factory and compared 23 of them with 23 age-matched workers in a beer factory as controls. The workers were interviewed and examined by neurologic, electrophysiologic, hematologic, biochemical, neurobehavioral, and postural sway tests. 1-BP exposure levels were estimated with passive samplers. Tests with a tuning fork showed diminished vibration sensation of the foot in 15 workers exposed to 1-BP but in none of the controls. 1-BP factory workers showed significantly longer distal latency in the tibial nerve than did the controls but no significant changes in motor nerve conduction velocity. Workers also displayed lower values in sensory nerve conduction velocity in the sural nerve, backward recalled digits, Benton visual memory test scores, pursuit aiming test scores, and five items of the Profile of Mood States (POMS) test (tension, depression, anxiety, fatigue, and confusion) compared with controls matched for age and education. Workers hired after May 1999, who were exposed to 1-BP only (workers hired before 1999 could have also been exposed to 2-BP), showed similar changes in vibration sense, distal latency, Benton test scores, and depression and fatigue in the POMS test. Time-weighted average exposure levels in the workers were 0.34-49.19 ppm. Exposure to 1-BP could adversely affect peripheral nerves or/and the central nervous system.


Assuntos
Hidrocarbonetos Bromados/intoxicação , Transtornos da Memória/induzido quimicamente , Exposição Ocupacional , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Adulto , Estudos de Casos e Controles , Indústria Química , Fadiga/etiologia , Feminino , Humanos , Transtornos do Humor/etiologia , Condução Nervosa/efeitos dos fármacos , Escalas de Graduação Psiquiátrica
19.
Toxicol Sci ; 70(2): 269-80, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12441372

RESUMO

The ability of N-methyldithiocarbamate (NMDC) to generate methylisothiocyanate and HS(-) together with its greater acid stability suggest that NMDC may exert greater acute toxicity following oral exposure than its dialkyl analog,N,N-dimethyldithiocarbamate (DMDC). To assess this possibility, cell culture, perfused liver, and in vivo studies were performed to delineate differences in the hepatotoxicity and thiol interactions of NMDC and DMDC in the rat. The role of methylisothiocyanate and HS(-) in NMDC-induced hepatotoxicity was evaluated and glutathione interactions characterized through analysis of reduced glutathione (GSH), glutathione disulfide (GSSG), and S-methylthiocarbamoylglutathione (GSMITC) using HPLC and liquid chromatography tandem mass spectrometry (LC/MS/MS). Following oral administration, centrilobular hepatocyte necrosis and enzyme leakage was observed for NMDC but not for DMDC. Dose dependent decreases of intracellular GSH were produced by both dithiocarbamates in primary hepatocytes but DMDC appeared to deplete GSH through the generation of GSSG whereas NMDC produced GSMITC consistent with the generation of a methylisothiocyanate intermediate. In primary hepatocytes, both NMDC and DMDC cytotoxicity was increased by prior depletion of intracellular GSH and diminished by prior supplementation of GSH. The results obtained using perfused livers were similar for NMDC in that elevated levels of GSMITC were detected in the bile; however, DMDC produced only a modest increase of GSSG over controls that was not significantly different to that produced by NMDC. Results obtained from isolated liver mitochondria and primary hepatocytes were not consistent with NMDC producing HS(-)-mediated inhibition of mitochondrial respiration. These data support a greater potential for hepatotoxicity to result following oral exposure to NMDC relative to DMDC and that glutathione may play a role in cytoprotection for NMDC, presumably through detoxification of a methylisothiocyanate metabolite.


Assuntos
Dimetilditiocarbamato/toxicidade , Poluentes Ambientais/toxicidade , Glutationa/análogos & derivados , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tiocarbamatos/toxicidade , Administração Oral , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Glutationa/farmacologia , Hepatócitos/enzimologia , Hepatócitos/metabolismo , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Espectrometria de Massas , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Oxigênio/metabolismo , Perfusão , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Toxicol Sci ; 81(1): 160-71, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15187237

RESUMO

Previous studies have demonstrated the ability of the dithiocarbamate, disulfiram, to produce a peripheral neuropathy in humans and experimental animals and have also provided evidence that N,N-diethyldithiocarbamate (DEDC) is a proximate toxic species of disulfiram. The ability of DEDC to elevate copper levels in the brain suggests that it may also elevate levels of copper in peripheral nerve, possibly leading to oxidative stress and lipid peroxidation from redox cycling of copper. The study presented here investigates the potential of DEDC to promote copper accumulation and lipid peroxidation in peripheral nerve. Rats were administered either DEDC or deionized water by ip osmotic pumps and fed a normal diet or diet containing elevated copper, and the levels of metals, isoprostanes, and the severity of lesions in peripheral nerve and brain were assessed by ICP-AES/AAS, GC/MS, and light microscopy, respectively. Copper was the only metal that demonstrated any significant compound-related elevations relative to controls, and total copper was increased in both brain and peripheral nerve in animals administered DEDC on both diets. In contrast, lesions and elevated F2-isoprostanes were significantly increased only in peripheral nerve for the rats administered DEDC on both diets. Autometallography staining of peripheral nerve was consistent with increased metal content along the myelin sheath, but in brain, focal densities were observed, and a periportal distribution occurred in liver. These data are consistent with the peripheral nervous system being more sensitive to DEDC-mediated demyelination and demonstrate the ability of DEDC to elevate copper levels in peripheral nerve. Additionally lipid peroxidation appears to either be a contributing event in the development of demyelination, possibly through an increase of redox active copper, or a consequence of the myelin injury.


Assuntos
Quelantes/toxicidade , Cobre/metabolismo , Ditiocarb/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Dissuasores de Álcool/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Dieta , Dissulfiram/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Histocitoquímica , Isoprostanos/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Bainha de Mielina/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Coloração pela Prata , Espectrofotometria Atômica , Distribuição Tecidual , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA