Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 13(1): 158-72, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24138474

RESUMO

The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of DNA Elements (ENCODE) data sets were used to obtain further information relative to cell/tissue specific chromosome 16 coding gene expression patterns and to infer the presence of missing proteins. Twenty-four shotgun 2D-LC-MS/MS and gel/LC-MS/MS MIAPE compliant experiments, representing 41% coverage of chromosome 16 proteins, were performed. Furthermore, mapping of large-scale multicenter mass spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines into RNA-Seq data allowed further insights relative to correlation of chromosome 16 transcripts and proteins. Detection and quantification of chromosome 16 proteins in biological matrices by SRM procedures are also primary goals of the SpHPP. Two strategies were undertaken: one focused on known proteins, taking advantage of MS data already available, and the second, aimed at the detection of the missing proteins, is based on the expression of recombinant proteins to gather MS information and optimize SRM methods that will be used in real biological samples. SRM methods for 49 known proteins and for recombinant forms of 24 missing proteins are reported in this study.


Assuntos
Cromossomos Humanos Par 16 , Proteoma , Transcriptoma , Cromatografia Líquida , Humanos , Espectrometria de Massas , Análise de Sequência de RNA
2.
Brain Sci ; 10(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936259

RESUMO

Deafness affects the expression and distribution of voltage-dependent potassium channels (Kvs) of central auditory neurons in the short-term, i.e., hours to days, but the consequences in the expression of Kvs after long-term deafness remain unknown. We tested expression and distribution of Kv1.1 and Kv3.1b, key for auditory processing, in the rat cochlear nucleus (CN), and in the inferior colliculus (IC), at 1, 15 and 90 days after mechanical lesion of the cochlea, using a combination of qRT-PCR and Western blot in the whole CN, along with semi-quantitative immunocytochemistry in the AVCN, where the role of both Kvs in excitability control for accurate auditory timing signal processing is well established. Neither Kv1.1/Kv3.1b mRNA or protein expression changed significantly in the CN between 1 and 15 days after deafness. At 90 days post-lesion, however, mRNA and protein expression for both Kvs increased, suggesting that expression regulation of Kv1.1 and Kv3.1b is part of cellular mechanisms for long-term adaptation to auditory input deprivation in the CN. Consistent with these findings, immunocytochemical localization showed increased labeling intensity for both Kvs in the AVCN at day 90 after cochlear lesion, further supporting that up-regulation of Kv1.1 and Kv3.1b in neurons of this CN division, over a long term after auditory deprivation, may be required to adapt intrinsic excitability to altered input. Contrary to findings in the CN, in the IC, expression levels of Kv1.1 and Kv3.1b did not undergo major changes after cochlear lesion. In particular, there was no evidence of long-term up-regulation of neither Kv1.1 or Kv3.1b, supporting that such post-lesion adaptive mechanism may not be needed in the IC. This suggests that post-lesion plastic adaptations to auditory input deprivation are not stereotypical along the auditory pathway.

3.
Biochem J ; 411(2): 457-65, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18237276

RESUMO

MTAP (5'-methylthioadenosine phosphorylase) catalyses the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1-phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present study we have investigated the regulation of MTAP by ROS (reactive oxygen species). The results of the present study support the inactivation of MTAP in the liver of bacterial LPS (lipopolysaccharide)-challenged mice as well as in HepG2 cells after exposure to t-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of V(max) and involves the specific oxidation of Cys(136) and Cys(223) thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys(145) and Cys(211) were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to the mediation of the loss of MTAP activity as assessed by site-directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of the methionine catabolic pathway in the liver. Reduced MTA (5'-deoxy-5'-methylthioadenosine)-degrading activity may compensate for the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation.


Assuntos
Hepatócitos/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Dissulfetos/química , Dissulfetos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Purina-Núcleosídeo Fosforilase/química , Tionucleosídeos/metabolismo
4.
Cancer Lett ; 335(1): 66-74, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23403078

RESUMO

The p38 Mitogen Activated Protein Kinase (MAPK) signaling pathway has become a major player in the response to DNA-damage. A growing body of evidences has been relating this signaling pathway to the cellular response to ionizing radiation (IR), suggesting a role in radioresistance. Here, we study the implication of this signaling pathway in the response to IR in terms of radioresistance. To this end we used 10 different cell lines derived from several types of tumors (colorectal, non-small cell lung cancer -NSCLC-, renal and glioblastoma). Although p38 MAPK is transiently activated by IR, our data, obtained by genetic and chemical approaches, showed that this signaling pathway is not implicated in cellular viability after IR exposure. Indeed, down-modulation of this signaling pathway promotes a mild radiosensitivity depending on the cell line. However, it is remarkable that lack of p38 MAPK α abrogates the radiosensitizing effect of 5-Fluorouracil (5-FU) in HCT116 cell line, supporting the role of this MAPK in the radiosensitizing action of 5-FU.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Proteína Quinase 14 Ativada por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA