Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Evol Biol ; 37(6): 677-692, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38629140

RESUMO

The impact of climate change on populations will be contingent upon their contemporary adaptive evolution. In this study, we investigated the contemporary evolution of 4 populations of the cold-water kelp Laminaria digitata by analyzing their spatial and temporal genomic variations using ddRAD-sequencing. These populations were sampled from the center to the southern margin of its north-eastern Atlantic distribution at 2 time points, spanning at least 2 generations. Through genome scans for local adaptation at a single time point, we identified candidate loci that showed clinal variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This finding suggests that SST may drive the adaptive response of these kelp populations, although factors such as species' demographic history should also be considered. Additionally, we performed a simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes over time. This enabled the detection of loci in the southernmost population that exhibited temporal differentiation beyond what would be expected from genetic drift alone: these are candidate loci which could have evolved under selection over time. In contrast, we did not detect any outlier locus based on temporal differentiation in the population from the North Sea, which also displayed low and decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations can be attributed to variations in the prevalence of selection relative to genetic drift across different environments. Therefore, our study highlights the potential of temporal genomics to offer valuable insights into the contemporary evolution of marine foundation species facing climate change.


Assuntos
Kelp , Kelp/genética , Genômica , Mudança Climática , Evolução Biológica , Variação Genética , Seleção Genética , Laminaria/genética , Adaptação Fisiológica/genética , Deriva Genética
6.
Nature ; 617(7959): 16-17, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130931
9.
Nature ; 615(7953): 567-568, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922672
11.
Nature ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095408
18.
Mol Ecol ; 30(8): 1806-1822, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629449

RESUMO

The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.


Assuntos
Kelp , Laminaria , Deriva Genética , Genômica , Kelp/genética , Laminaria/genética , Água
19.
J Evol Biol ; 34(7): 992-1009, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096650

RESUMO

A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy.


Assuntos
Evolução Biológica , Phaeophyceae , Animais , Teorema de Bayes , Estágios do Ciclo de Vida , Phaeophyceae/genética , Reprodução
20.
J Hered ; 112(1): 92-107, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511982

RESUMO

Partially clonality is an incredibly common reproductive mode found across all the major eukaryotic lineages. Yet, population genetic theory is based on exclusive sexuality or exclusive asexuality, and partial clonality is often ignored. This is particularly true in haplodiplontic eukaryotes, including algae, ferns, mosses, and fungi, where somatic development occurs in both the haploid and diploid stages. Haplodiplontic life cycles are predicted to be correlated with asexuality, but tests of this prediction are rare. Moreover, there are unique consequences of having long-lived haploid and diploid stages in the same life cycle. For example, clonal processes uncouple the life cycle such that the repetition of the diploid stage via clonality leads to the loss of the haploid stage. Here, we surveyed the literature to find studies that had genotyped both haploid and diploid stages and recalculated population genetic summary metrics for seven red algae, one green alga, three brown algae, and three mosses. We compared these data to recent simulations that explicitly addressed the population genetic consequences of partial clonality in haplodiplontic life cycles. Not only was partial clonality found to act as a homogenizing force, but the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetic indices. We found remarkably similar patterns across commonly used population genetic metrics between our empirical and recent theoretical expectations. To facilitate future studies, we provide some recommendations for sampling and analyzing population genetic parameters for haplodiplontic taxa.


Assuntos
Genética Populacional , Modelos Genéticos , Briófitas/genética , Clorófitas/genética , Diploide , Haploidia , Estágios do Ciclo de Vida , Phaeophyceae/genética , Reprodução , Rodófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA