Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230245, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39005034

RESUMO

It has been reported that threatening and non-threatening visual stimuli can be distinguished based on the multi-voxel patterns of haemodynamic activity in the human ventral visual stream. Do these findings mean that there may be evolutionarily hardwired mechanisms within early perception, for the fast and automatic detection of threat, and maybe even for the generation of the subjective experience of fear? In this human neuroimaging study, we presented participants ('fear' group: N = 30; 'no fear' group: N = 30) with 2700 images of animals that could trigger subjective fear or not as a function of the individual's idiosyncratic 'fear profiles' (i.e. fear ratings of animals reported by a given participant). We provide evidence that the ventral visual stream may represent affectively neutral visual features that are statistically associated with fear ratings of participants, without representing the subjective experience of fear itself. More specifically, we show that patterns of haemodynamic activity predictive of a specific 'fear profile' can be observed in the ventral visual stream whether a participant reports being afraid of the stimuli or not. Further, we found that the multivariate information synchronization between ventral visual areas and prefrontal regions distinguished participants who reported being subjectively afraid of the stimuli from those who did not. Together, these findings support the view that the subjective experience of fear may depend on the relevant visual information triggering implicit metacognitive mechanisms in the prefrontal cortex. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.


Assuntos
Medo , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Córtex Visual , Humanos , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Masculino , Córtex Visual/fisiologia , Adulto , Feminino , Adulto Jovem , Percepção Visual/fisiologia , Estimulação Luminosa
2.
Front Pain Res (Lausanne) ; 4: 1210572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028433

RESUMO

Introduction: The hypoalgesic effect of music has long been established. However, the characteristics of music which are important for reducing pain have not been well-studied. Some research has compared subject-selected preferred music to unfamiliar music selected by researchers, and has typically found a superior effect from preferred music. In this study, we sought to discover what aspects of listeners' relationship with their preferred music was important in producing a hypoalgesic effect. Methods: We conducted a thermal pain and music listening experiment with 63 participants (14 male, 49 female, mean age = 21.3), in which music excerpts were paired with thermal stimulations. Pain ratings of intensity and unpleasantness, as well as emotional response variables, were rated on visual analog scales. We also conducted brief structured interviews about participants' favorite music, on which we conducted thematic content analysis. Themes and emotion variables were analyzed for their effects on pain ratings. Results: We first replicated the finding that favorite music outperforms experimenter-selected relaxing music in reducing pain unpleasantness (MD = -7.25, p < 0.001) and that the difference in hypoalgesia was partially mediated by an increase in musical chills (ab = -2.83, p < 0.01). We then conducted a theme analysis on the interview transcripts and produced four themes relating to emotional experience: moving/bittersweet, calming/relaxing, happy/cheerful, and energizing/activating. We found suggestive evidence that moving/bittersweet favorite music reduces pain unpleasantness through increased music pleasantness (ab = -5.48, p < 0.001) and more musical chills (ab = -0.57, p = 0.004). Discussion: We find that music pleasantness and musical chills are salient predictors of music-induced hypoalgesia, and that different categories of favorite music derived from qualitative analysis may engage these emotional pathways to different degrees.

3.
Front Neuroinform ; 17: 1251023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841811

RESUMO

Neuroimaging research requires sophisticated tools for analyzing complex data, but efficiently leveraging these tools can be a major challenge, especially on large datasets. CBRAIN is a web-based platform designed to simplify the use and accessibility of neuroimaging research tools for large-scale, collaborative studies. In this paper, we describe how CBRAIN's unique features and infrastructure were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for physiological noise modeling in fMRI data. This case study highlights three key elements of CBRAIN's infrastructure that enable streamlined, multimodal tool integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry schema, and convenient in-browser visualization of results. By incorporating PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of use, and scalability of physiological preprocessing. Researchers now have access to a uniform and intuitive interface for analyzing data, which facilitates remote and collaborative evaluation of results. With these improvements, CBRAIN aims to become an essential open-science tool for integrative neuroimaging research, supporting FAIR principles and enabling efficient workflows for complex analysis pipelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA