RESUMO
Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.
Assuntos
Ciclofilinas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sítios de Ligação , Cálcio/metabolismo , Morte Celular , Ciclofilinas/química , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Metaloendopeptidases/química , Membranas Mitocondriais/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismoRESUMO
Dysregulation of mitochondrial Ca(2+)-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca(2+) transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca(2+) transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca(2+) transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca(2+) influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, (D676A D688K)LETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca(2+) uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca(2+) transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca(2+) flux in shaping cellular bioenergetics.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , RatosRESUMO
Emerging findings suggest that two lineages of mitochondrial Ca(2+) uptake participate during active and resting states: 1) the major eukaryotic membrane potential-dependent mitochondrial Ca(2+) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca(2+) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca(2+) accumulation are unclear. Solute carriers--solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25--represent a family of EF-hand-containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference-mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca(2+) uptake and reduces cytosolic Ca(2+) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand-domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca(2+) uptake. In addition, SLC25A23 interacts with mitochondrial Ca(2+) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA-insensitive SLC25A23 cDNA restores mitochondrial Ca(2+) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca(2+) influx.
Assuntos
Antiporters/genética , Canais de Cálcio/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Morte Celular , Células Clonais , Regulação da Expressão Gênica , Células HeLa , Histamina/farmacologia , Humanos , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Resting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca(2+) current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca(2+) accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction.