Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 18(1): 10-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16563721

RESUMO

To determine whether glutamine affects glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) metabolism, seven healthy beagle dogs received 6-h infusions of [(15)N]glutamate and [(13)C]leucine after a 3-day fast. Isotope infusions were performed during oral feeding with an elemental regimen, supplemented with either l-glutamine or an isonitrogenous amino acid mixture, on two separate days and in randomized order. Timed blood samples were obtained, and a surgical duodenal biopsy was performed after 6 h of isotope infusion. GSH fractional synthesis rate (FSR) was assessed from [(15)N]glutamate incorporation into blood and gut GSH, and duodenal protein synthesis from [(13)C]leucine incorporation into gut protein. Glutamine supplementation failed to alter erythrocyte GSH concentration (2189+/-86 vs. 1994+/-102 micromol L(-1) for glutamine vs. control; ns) or FSR (64+/-17% vs. 74+/-20% day(-1); ns). In the duodenum, glutamine supplementation was associated with a 92% rise in reduced/oxidized GSH ratio (P=.024) and with a 44% decline in GSH FSR (96+/-15% day(-1) vs. 170+/-18% day(-1); P=.005), whereas total GSH concentration remained unchanged (808+/-154 vs. 740+/-127 micromol kg(-1); P=.779). We conclude that, in dogs receiving enteral nutrition after a 3-day fast: (1) glutamine availability does not affect blood GSH, and, (2) in contrast, in the duodenum, the preserved GSH pool, along with a decreased synthesis rate, suggests that glutamine may maintain GSH pool and intestinal redox status by acutely decreasing GSH utilization.


Assuntos
Glutamina/farmacologia , Glutationa/metabolismo , Animais , Cães , Duodeno/metabolismo , Nutrição Enteral , Eritrócitos/química , Feminino , Ácido Glutâmico/sangue , Glutamina/sangue , Glutationa/biossíntese , Glutationa/sangue , Mucosa Intestinal/metabolismo , Cinética , Masculino , Modelos Animais , Oxirredução , Biossíntese de Proteínas
2.
Cancer Res ; 62(7): 2169-74, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11929840

RESUMO

The inhibitor of caspase-3-activated DNase (ICAD) is a caspase-3 substrate that controls nuclear apoptosis. ICAD has two isoforms: a functional isoform of M(r) 45,000, ICAD-L/DNA fragmentation factor (DFF) 45; and a M(r) 35,000 isoform, ICAD-S/DFF35. ICAD-deficient murine cells display resistance to apoptotic stimuli and absence of typical nuclear changes of apoptosis. Our aim was to: (a) characterize the ICAD expression in several human colonic cancer cell lines compared with human normal colonocytes; and (b) correlate the phenotypic features of apoptosis to the level of ICAD expression. ICAD expression was assessed by immunoblot analysis. Early markers of apoptosis of cultured cells included lactate dehydrogenase retention in dying cells, cytokeratin 18 cleavage, and caspase-3 activation. Nuclear markers of apoptosis were assessed by Hoechst staining of nuclei, electron microscopy, and DNA electrophoresis. Inhibition of caspases was performed using a broad-spectrum caspase inhibitor, z-Val-Ala-Asp-fluoromethyl ketone. ICAD expression was restricted to the functional ICAD-L/DFF45 isoform in colonic cancer cells as well as in human normal colonocytes. In a clonal derivative of HT29 cells (HT29-Cl.16E cells), ICAD expression was found to be down-regulated during the exponential phase of growth, and the cell death triggered by IFN-gamma, anti-Fas antibody plus Adriamycin was characterized by the expression of early markers of apoptosis, whereas the key nuclear features of apoptosis were absent. In contrast, exposure of confluent cells to this treatment led to a typical apoptotic nuclear fragmentation. Both forms of apoptosis, in exponentially growing and confluent cells, were sensitive to the broad spectrum inhibitor of caspases, z-Val-Ala-Asp-fluoromethyl ketone. Our findings support the concept that the expression of ICAD is essential to the execution of full-blown apoptosis in colonic cancer cells. Altogether, our results point to ICAD as a potential target for restoring a normal apoptotic signal transduction pathway in colonic cancer cells.


Assuntos
Apoptose/fisiologia , Neoplasias do Colo/metabolismo , Biossíntese de Proteínas , Proteínas , Proteínas Reguladoras de Apoptose , Células CACO-2 , Divisão Celular/fisiologia , Núcleo Celular/fisiologia , Colo/citologia , Colo/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos , Células Tumorais Cultivadas
3.
Cancer Res ; 64(12): 4227-34, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15205335

RESUMO

Mounting evidence suggests that the position in the cell cycle of cells exposed to an oxidative stress could determine their survival or apoptotic cell death. This study aimed at determining whether nitric oxide (NO)-induced cell death in colon cancer cells might depend on their position in the cell cycle, based on a clone of the cancer cell line HT29 exposed to an NO donor, in combination with the manipulation of the cell entry into the cell cycle. We show that PAPA NONOate (pNO), from 10(-4) m to 10(-3) m, exerted early and reversible cytostatic effects through ribonucleotide reductase inhibition, followed by late resumption of cell growth at 5 x 10(-4) m pNO. In contrast, 10(-3) m pNO led to late programmed cell death that was accounted for by the progression of cells into the cell cycle as shown by (a) the accumulation of apoptotic cells in the G(2)-M phase at 10(-3) m pNO treatment; and (b) the prevention of cell death by inhibiting the entry of cells into the cell cycle. The entry of pNO-treated cells into the G(2)-M phase was associated with actin depolymerization and its S-glutathionylation in the same way as in control cells. However, the pNO treatment interfered with the build-up of a high reducing power, associated in control cells with a dramatic increase in reduced glutathione biosynthesis in the G(2)-M phase. This oxidative stress prevented the exit from the G(2)-M phase, which requires a high reducing power for actin deglutathionylation and its repolymerization. Finally, our demonstration that programmed cell death occurred through a caspase-independent pathway is in line with the context of a nitrosative/oxidative stress. In conclusion, this work, which deciphers the connection between the position of colonic cancer cells in the cell cycle and their sensitivity to NO-induced stress and their programmed cell death, could help optimize anticancer protocols based on NO-donating compounds.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Fase G2/fisiologia , Mitose/fisiologia , Óxido Nítrico/farmacologia , Actinas/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fase G2/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Hidrazinas/farmacologia , Mitose/efeitos dos fármacos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Oxirredução
4.
Biochem J ; 364(Pt 2): 349-59, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12023877

RESUMO

The carbon flux through the oxidative branch of the pentose phosphate pathway (PPP) can be viewed as an integrator of the antioxidant mechanisms via the generation of NADPH. It could therefore be used as a control point of the cellular response to an oxidative stress. Replacement of glucose by galactose sensitized the human epithelial cell line HGT-1 to H2O2 stress. Here we demonstrate that, due to the restricted galactose flux into the PPP, the H2O2 stress led to early cellular blebbing followed by cell necrosis, these changes being associated with a fall in the NADPH/NADP+ ratio and GSH depletion. H2O2 cytotoxicity was prevented by adding 2-deoxyglucose (2dGlc). This protection was associated with an increased flow of 2-deoxyglucose 6-phosphate into the oxidative branch of the PPP together with the prevention of the NADPH/NADP+ fall and the maintenance of intracellular GSH redox homoeostasis. Inhibitors of enzyme pathways connecting the PPP to GSH recycling abolished the 2dGlc protection. In carbohydrate-free culture conditions, 2dGlc dose-dependent protective effect was paralleled by a dose-dependent influx of 2dGlc into the PPP leading to the maintenance of the intracellular redox status. By contrast, in Glc-fed cells, the PPP was not a control point of the cellular resistance to H2O2 stress as they maintained a high NADPH/NADP+ ratio. Both 2dGlc and Glc inhibited, through the maintenance of GSH redox status, NO cytotoxicity on galactose-containing Dulbecco's modified Eagle's medium (Gal-DMEM)-fed cells. 2dGlc did not prevent the fall of ATP content in NO-treated Gal-DMEM-fed cells, indicating that NO cytotoxicity was essentially due to the disruption of GSH redox homoeostasis and not to the alteration of ATP production by the mitochondrial respiratory chain. The maintenance of ATP content in NO-treated glucose-fed cells was due to their ability to derive their energy from anaerobic glycolysis. In conclusion, Gal-DMEM and 2dGlc-supplemented Gal-DMEM provide a useful system to decipher and organize into a hierarchy the targets of several stresses at the level of intact barrier epithelial cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico/fisiologia , Estresse Oxidativo , Linhagem Celular , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , NADP/metabolismo
5.
Kidney Int ; 64(1): 170-80, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12787407

RESUMO

BACKGROUND: Nitric oxide plays an important role in the kidney through effects on both renal hemodynamics and tubular functions. Tubular epithelial cells are thus a target for nitric oxide. However, as to whether tubular epithelial cells endogeneously produce nitric oxide under physiologic conditions in human kidney is currently unknown. The aim of the present study was to characterize and localize in situ the nitric oxide synthase (NOS) isoforms (NOS1, NOS2, and NOS3) expressed in human normal kidney, and soluble guanylyl cyclase, the well-known target for nitric oxide. METHODS: Five complementary experimental approaches were used: (1) detection of NOS reductase activity by nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, (2) immunolocalization of the NOS isoforms (NOS1, NOS2, NOS3), (3) immunoblot analysis, (4) quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of NOS mRNA, and (5) measurement of NOS activity as the conversion rate of l-[14C]-arginine to l-[14C]-citrulline. In addition, in situ detection of soluble guanylyl cyclase was assessed by immunohistochemistry. RESULTS: All these techniques led to consistent results showing that epithelial cells of most tubules along the human nephron exhibit functional NOS1, with a corticomedullary gradient observed both at the protein and mRNA levels. Moreover, epithelial cells expressing NOS1 also express soluble guanylyl cyclase, indicating that these cells possess the machinery for autocrine/paracrine effect of nitric oxide. CONCLUSION: The present study demonstrates that NOS1 is strongly expressed in most tubules of the human nephron and therefore invites to consider epithelial cells as one of the major source of nitric oxide in the human kidney under physiologic conditions.


Assuntos
Guanilato Ciclase/metabolismo , Rim/metabolismo , Óxido Nítrico Sintase/metabolismo , Comunicação Autócrina , Células Epiteliais/metabolismo , Histocitoquímica , Humanos , Immunoblotting , Imuno-Histoquímica , Rim/citologia , NADPH Desidrogenase/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Oxirredutases/metabolismo , Comunicação Parácrina , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA