Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nephrol Dial Transplant ; 39(6): 956-966, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38224954

RESUMO

INTRODUCTION: Our main objective was to identify baseline prognostic factors predictive of rapid disease progression in a large unselected clinical autosomal dominant polycystic kidney disease (ADPKD) cohort. METHODS: A cross-sectional analysis was performed in 618 consecutive ADPKD patients assessed and followed-up for over a decade. A total of 123 patients (19.9%) had reached kidney failure by the study date. Data were available for the following: baseline eGFR (n = 501), genotype (n = 549), baseline ultrasound mean kidney length (MKL, n = 424) and height-adjusted baseline MKL (HtMKL, n = 377). Rapid disease progression was defined as an annualized eGFR decline (∆eGFR) of >2.5 mL/min/year by linear regression over 5 years (n = 158). Patients were further divided into slow, rapid and very rapid ∆eGFR classes for analysis. Genotyped patients were classified into several categories: PKD1 (T, truncating; or NT, non-truncating), PKD2, other genes (non-PKD1 or -PKD2), no mutation detected or variants of uncertain significance. RESULTS: A PKD1-T genotype had the strongest influence on the probability of reduced baseline kidney function by age. A multivariate logistic regression model identified PKD1-T genotype and HtMKL (>9.5 cm/m) as independent predictors for rapid disease progression. The combination of both factors increased the positive predictive value for rapid disease progression over age 40 years and of reaching kidney failure by age 60 years to 100%. Exploratory analysis in a subgroup with available total kidney volumes showed higher positive predictive value (100% vs 80%) and negative predictive value (42% vs 33%) in predicting rapid disease progression compared with the Mayo Imaging Classification (1C-E). CONCLUSION: Real-world longitudinal data confirm the importance of genotype and kidney length as independent variables determining ∆eGFR. Individuals with the highest risk of rapid disease progression can be positively selected for treatment based on this combination.


Assuntos
Progressão da Doença , Genótipo , Taxa de Filtração Glomerular , Rim , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Masculino , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Rim/patologia , Rim/diagnóstico por imagem , Prognóstico , Seguimentos , Canais de Cátion TRPP/genética , Estatura/genética
2.
J Med Genet ; 60(4): 397-405, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36038257

RESUMO

BACKGROUND: Monogenic disorders are estimated to account for 10%-12% of patients with kidney failure. We report the unexpected finding of an unusual uromodulin (UMOD) variant in multiple pedigrees within the British population and demonstrate a shared haplotype indicative of an ancestral variant. METHODS: Probands from 12 apparently unrelated pedigrees with a family history of kidney failure within a geographically contiguous UK region were shown to be heterozygous for a pathogenic variant of UMOD c.278_289delTCTGCCCCGAAG insCCGCCTCCT. RESULTS: A total of 88 clinically affected individuals were identified, all born in the UK and of white British ethnicity. 20 other individuals with the variant were identified in the UK 100,000 Genomes (100K) Project and 9 from UK Biobank (UKBB). A common extended haplotype was present in 5 of the UKBB individuals who underwent genome sequencing which was only present in <1 in 5000 of UKBB controls. Significantly, rare variants (<1 in 250 general population) identified within 1 Mb of the UMOD variant by genome sequencing were detected in all of the 100K individuals, indicative of an extended shared haplotype. CONCLUSION: Our data confirm a likely founder UMOD variant with a wide geographical distribution within the UK. It should be suspected in cases of unexplained familial nephropathy presenting in patients of white British ancestry.


Assuntos
Nefropatias , Insuficiência Renal , Humanos , Uromodulina/genética , Nefropatias/genética , Sequência de Bases , Haplótipos/genética , Insuficiência Renal/genética
3.
Genet Med ; 23(4): 689-697, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33168999

RESUMO

PURPOSE: To investigate the prevalence of biallelic PKD1 and PKD2 variants underlying very early onset (VEO) polycystic kidney disease (PKD) in a large international pediatric cohort referred for clinical indications over a 10-year period (2010-2020). METHODS: All samples were tested by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) of PKD1 and PKD2 genes and/or a next-generation sequencing panel of 15 additional cystic genes including PKHD1 and HNF1B. Two patients underwent exome or genome sequencing. RESULTS: Likely causative PKD1 or PKD2 variants were detected in 30 infants with PKD-VEO, 16 of whom presented in utero. Twenty-one of 30 (70%) had two variants with biallelic in trans inheritance confirmed in 16/21, 1 infant had biallelic PKD2 variants, and 2 infants had digenic PKD1/PKD2 variants. There was no known family history of ADPKD in 13 families (43%) and a de novo pathogenic variant was confirmed in 6 families (23%). CONCLUSION: We report a high prevalence of hypomorphic PKD1 variants and likely biallelic disease in infants presenting with PKD-VEO with major implications for reproductive counseling. The diagnostic interpretation and reporting of these variants however remains challenging using current American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) and Association of Clinical Genetic Science (ACGS) variant classification guidelines in PKD-VEO and other diseases affected by similar variants with incomplete penetrance.


Assuntos
Hereditariedade , Rim Policístico Autossômico Dominante , Criança , Humanos , Lactente , Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/epidemiologia , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Sequenciamento do Exoma
4.
Curr Osteoporos Rep ; 19(3): 256-263, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830428

RESUMO

Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/metabolismo , Metástase Neoplásica/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica/patologia , Microambiente Tumoral
5.
Kidney Int ; 98(2): 404-419, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32622526

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major cause of end-stage kidney disease in man. The central role of cyclic adenosine monophosphate (cAMP) in ADPKD pathogenesis has been confirmed by numerous studies including positive clinical trial data. Here, we investigated the potential role of another major regulator of renal cAMP, prostaglandin E2 (PGE2), in modifying disease progression in ADPKD models using selective receptor modulators to all four PGE2 receptor subtypes (EP1-4). In 3D-culture model systems utilizing dog (MDCK) and patient-derived (UCL93, OX161-C1) kidney cell lines, PGE2 strikingly promoted cystogenesis and inhibited tubulogenesis by stimulating proliferation while reducing apoptosis. The effect of PGE2 on tubulogenesis and cystogenesis in 3D-culture was mimicked or abolished by selective EP2 and EP4 agonists or antagonists but not those specific to EP1 or EP3. In a Pkd1 mouse model (Pkd1nl/nl), kidney PGE2 and COX-2 expression were increased by two-fold at the peak of disease (week four). However, Pkd1nl/nl mice treated with selective EP2 (PF-04418948) or EP4 (ONO-AE3-208) antagonists from birth for three weeks had more severe cystic disease and fibrosis associated with increased cell proliferation and macrophage infiltration. A similar effect was observed for the EP4 antagonist ONO-AE3-208 in a second Pkd1 model (Pax8rtTA-TetO-Cre-Pkd1f/f). Thus, despite the positive effects of slowing cyst growth in vitro, the more complex effects of inhibiting EP2 or EP4 in vivo resulted in a worse outcome, possibly related to unexpected pro-inflammatory effects.


Assuntos
Dinoprostona , Receptores de Prostaglandina E Subtipo EP2 , Animais , AMP Cíclico , Cães , Humanos , Inflamação/tratamento farmacológico , Rim , Camundongos
6.
Kidney Int ; 98(2): 420-435, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32622528

RESUMO

MicroRNAs (miRNAs) play an important role in regulating gene expression in health and disease but their role in modifying disease expression in Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains uncertain. Here, we profiled human urinary exosome miRNA by global small RNA-sequencing in an initial discovery cohort of seven patients with ADPKD with early disease (eGFR over 60ml/min/1.73m2), nine with late disease (eGFR under 60ml/min/1.73m2), and compared their differential expression with six age and sex matched healthy controls. Two kidney-enriched candidate miRNA families were identified (miR-192/miR-194-2 and miR-30) and selected for confirmatory testing in a 60 patient validation cohort by quantitative polymerase chain reaction. We confirmed that miR-192-5p, miR-194-5p, miR-30a-5p, miR-30d-5p and miR-30e-5p were significantly downregulated in patient urine exosomes, in murine Pkd1 cystic kidneys and in human PKD1 cystic kidney tissue. All five miRNAs showed significant correlations with baseline eGFR and ultrasound-determined mean kidney length and improved the diagnostic performance (area under the curve) of mean kidney length for the rate of disease progression. Finally, inverse correlations of these two miRNA families with increased expression in their predicted target genes in patient PKD1 cystic tissue identified dysregulated pathways and transcriptional networks including novel interactions between miR-194-5p and two potentially relevant candidate genes, PIK3R1 and ANO1. Thus, our results identify a subset of urinary exosomal miRNAs that could serve as novel biomarkers of disease progression and suggest new therapeutic targets in ADPKD.


Assuntos
Exossomos , MicroRNAs , Rim Policístico Autossômico Dominante , Animais , Biomarcadores , Exossomos/genética , Perfilação da Expressão Gênica , Humanos , Rim , Camundongos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética
7.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253489

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods: To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results: We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions: These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.

8.
Clin Kidney J ; 14(7): 1715-1718, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34221378

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney failure. At present, only one drug, tolvaptan, has been approved for use to slow disease progression, but its use is limited by reduced tolerability and idiosyncratic liver toxicity. Thiazolidinediones were first developed as insulin-sensitizers but also regulate gene transcription in multiple tissues, leading to systemic effects on metabolism, inflammation and vascular reactivity. In this issue, Blazer-Yost et al. report the results of a single-centre Phase 1b double-blind placebo-controlled crossover study of the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist pioglitazone in 18 ADPKD patients. Encouragingly, there were no major safety signals, although evidence of efficacy could not be demonstrated due to the small sample size. We review the preclinical evidence for the use of PPAR-γ agonists in ADPKD and speculate on the likely beneficial and adverse clinical effects of this interesting class of compounds in a future trial.

9.
Trends Endocrinol Metab ; 31(6): 398-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396842

RESUMO

In this opinion article we critically assess evidence for the existence of a family of antiangiogenic vascular endothelial growth factor (Vegfaxxxb) transcripts, arising from the use of a phylogenetically conserved alternative distal splice site within exon 8 of the VEGFA gene. We explain that prior evidence for Vegfaxxxb transcripts in tissues rests heavily upon flawed RT-PCR methodologies, with the extensive use of 5'-tailing in primer design being the main issue. Furthermore, our analysis of large RNA-seq data sets (human and ovine) fails to identify a single Vegfaxxxb transcript. Therefore, we challenge the very existence of Vegfaxxxb transcripts, which further questions the physiological relevance of studies based on the use of 'anti-VEGFAxxxb' antibodies. Our analysis has implications for the proposed therapeutic use of isoform-specific anti-VEGFA strategies for treating cancer and retinopathies.


Assuntos
Processamento Alternativo , Inibidores da Angiogênese , Reação em Cadeia da Polimerase/normas , Análise de Sequência de RNA/normas , Fator A de Crescimento do Endotélio Vascular , Processamento Alternativo/genética , Humanos , Isoformas de Proteínas , Fator A de Crescimento do Endotélio Vascular/genética
10.
Cancers (Basel) ; 11(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480356

RESUMO

Uveal melanoma (UM) is the most common primary intraocular tumour in adults, with a mean survival of six months following metastasis. The survival rates have not improved in over 30 years. This study has shown that sister chromatid exchange (SCE) is low in UM which is likely due to a reduced expression of FANCD2. As FANCD2 can function to suppress non-homologous end joining (NHEJ), this study therefore investigated NHEJ in UM. The activation of the catalytic subunit of the NHEJ pathway protein DNA-dependent protein kinase (DNA-PK) was measured by analysing the foci formation and the ligation efficiency by NHEJ determined using a plasmid-based end-joining assay. Using small-interfering RNA (siRNA) knock-down, and chemical inhibitors of DNA-PK, the survival of primary UM cultures and two cell lines were determined. To assess the homologous recombination capacity in response to the inhibition of DNA-PK, a SCE analysis was performed. In addition, to support the findings, the messenger RNA (mRNA) expression of genes associated with NHEJ was analysed using the Cancer Genome Atlas (TCGA)-UM RNAseq data (n = 79). The NHEJ activity and DNA-PKcs activation was upregulated in UM and the inhibition of DNA-PK selectively induced apoptosis and sensitized to ionising radiation and inter-strand cross-linking agents. The inhibition of the NHEJ protein DNA-PK is lethal to UM, indicating a potentially effective therapeutic option, either alone or as a sensitizer for other treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA