Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Pharm ; 15(2): 629-641, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29320195

RESUMO

The microstructure of pharmaceutical semicrystalline solid dispersions has attracted extensive attention due to its complexity that might result in the diversity in physical stability, dissolution behavior, and pharmaceutical performance of the systems. Numerous factors have been reported that dictate the microstructure of semicrystalline dispersions. Nevertheless, the importance of the complicated conformation of the polymer has never been elucidated. In this study, we investigate the microstructure of dispersions of polyethylene glycol and active pharmaceutical ingredients by small-angle X-ray scattering and high performance differential scanning calorimetry. Polyethylene glycol with molecular weight of 2000 g/mol (PEG2000) and 6000 g/mol (PEG6000) exhibited remarkable discrepancy in the lamellar periodicity in dispersions with APIs which was attributed to the differences in their folding behavior. The long period of PEG2000 always decreased upon aging-induced exclusion of APIs from the interlamellar region of extended chain crystals whereas the periodicity of PEG6000 may decrease or increase during storage as a consequence of the competition between the drug segregation and the lamellar thickening from nonintegral-folded into integral-folded chain crystals. These processes were in turn significantly influenced by the crystallization tendency of the pharmaceutical compounds, drug-polymer interactions, as well as the dispersion composition and crystallization temperature. This study highlights the significance of the polymer conformation on the microstructure of semicrystalline systems that is critical for the preparation of solid dispersions with consistent and reproducible quality.


Assuntos
Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Conformação Molecular , Peso Molecular , Difração de Raios X
2.
Mol Pharm ; 15(3): 1037-1051, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307188

RESUMO

The crystallization of metastable crystal polymorphs in polymer matrices has been extensively reported in literature as a possible approach to enhance the solubility of poorly water-soluble drug compounds, yet no clarification of the mechanism of the polymorph formation has been proposed. The current work aims to elucidate the polymorphism behavior of the model compound indomethacin as well as the mechanism of polymorph selection of drugs in semicrystalline systems. Indomethacin crystallized as either the α- or τ-form, a new metastable form, or a mixture of the two polymorphs in dispersions containing different drug loadings in polyethylene glycol, poloxamer, or Gelucire as the result of the variation in the mobility of drug molecules. As a general rule, low molecular mobility of the amorphous drug favors the crystallization into thermodynamically stable forms whereas metastable crystalline polymorphs are preferred when the molecular mobility of the drug is sufficiently high. This rule provides insight into the polymorph selection of numerous active pharmaceutical ingredients in semicrystalline dispersions and can be used as a guide for polymorphic screening from melt crystallization by tuning the mobility of drug molecules. In addition, the drug crystallized faster while the polymer crystallized slower as the drug-loading increased with the maxima of drug crystallization rate in 70% indomethacin dispersion. Increasing the drug content in solid dispersions reduced the τ to α polymorphic transition rate, except for when the more stable form was initially dominant. The segregation of τ and α polymorphs as well as the polymorphic transformation during storage led to the inherent inhomogeneity of the semicrystalline dispersions. This study highlights and expands our understanding about the complex crystallization behavior of semicrystalline systems and is crucial for preparation of solid dispersions with reproducible and consistent physicochemical properties and pharmaceutical performance.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Indometacina/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Cristalização , Gorduras/química , Microscopia Óptica não Linear , Óleos/química , Poloxâmero/química , Polietilenoglicóis/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Mol Pharm ; 14(5): 1726-1741, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363028

RESUMO

We recently found that indomethacin (IMC) can effectively act as a powerful crystallization inhibitor for polyethylene glycol 6000 (PEG) despite the fact that the absence of interactions between the drug and the carrier in the solid state was reported in the literature. However, in the present study, we investigate the possibility of drug-carrier interactions in the liquid state to explain the polymer crystallization inhibition effect of IMC. We also aim to discover other potential PEG crystallization inhibitors. Drug-carrier interactions in both liquid and solid state are characterized by variable temperature Fourier transform infrared spectroscopy (FTIR) and cross-polarization magic angle spinning 13C nuclear magnetic resonance spectroscopy (CP/MAS NMR). In the liquid state, FTIR data show evidence of the breaking of hydrogen bonding between IMC molecules to form interactions of the IMC monomer with PEG. The drug-carrier interactions are disrupted upon storage and polymer crystallization, resulting in segregation of IMC from PEG crystals that can be observed under polarized light microscopy. This process is further confirmed by 13C NMR since in the liquid state, when the IMC/PEG monomer units ratio is below 2:1, IMC signals are undetectable because of the loss of cross-polarization efficiency in the mobile IMC molecules upon attachment to PEG chains via hydrogen bonding. This suggests that each ether oxygen of the PEG unit can form hydrogen bonds with two IMC molecules. The NMR spectrum of IMC shows no change in solid dispersions with PEG upon storage, indicating the absence of interactions in the solid state, hence confirming previous studies. The drug-carrier interactions in the liquid state elucidate the crystallization inhibition effect of IMC on PEG as well as other semicrystalline polymers such as poloxamer and Gelucire. However, hydrogen bonding is a necessary but apparently not a sufficient condition for the polymer crystallization inhibition. Screening of crystallization inhibitors of semicrystalline polymers discovers numerous candidates that exhibit the same behavior as IMC, demonstrating a general pattern of polymer crystallization inhibition rather than a particular case. Furthermore, the crystallization inhibition effect of drugs on PEG is independent of the carrier molecular weight. These mechanistic findings on the formation and disruption of hydrogen bonds in semicrystalline dispersions can be extended to amorphous dispersions and are of significant importance for preparation of solid dispersions with consistent and reproducible physicochemical properties.


Assuntos
Indometacina/química , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Mol Pharm ; 13(6): 1879-93, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27092396

RESUMO

Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.


Assuntos
Itraconazol/química , Polietilenoglicóis/química , Polivinil/química , Comprimidos/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Cristais Líquidos/química , Pós/química , Pressão , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
5.
Mol Pharm ; 12(7): 2493-504, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26056715

RESUMO

The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.


Assuntos
Indometacina/química , Polietilenoglicóis/química , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Cinética , Peso Molecular , Polímeros/química , Pós/química , Solubilidade , Difração de Raios X/métodos
6.
Pharm Res ; 31(11): 3191-200, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24852893

RESUMO

PURPOSE: The phase response of Miconazole-PVP VA64 solid dispersions upon compression was investigated. This would allow understanding the phase behavior of these solid dispersions upon application of a different kind of stress (other than humidity and temperature) and ultimately lead to mechanistic perception of the phase changes taking place. METHODS: Miconazole and PVP VA64 were chosen as a model drug and polymer, respectively and solid dispersions were prepared by spray drying. Dried solid dispersions were compressed using different compression pressure but constant dwell time. MDSC and XRPD were used to characterize and study the effect of compression on the system. RESULTS: The solid dispersions showed a single Tg till 20% drug loading after which two Tg's were observed. Application of compression to the phase separated 30 and 40% compositions induced mixing resulting in only a single Tg. This reduction in number of Tg's upon compression is a result of mixing which can be attributed to polymer flow resulting in reduction of the domain size of different phases in the solid dispersions. CONCLUSIONS: Application of compression can influence the phase behavior of Miconazole-PVP VA64 solid dispersions. This observation may have drastic impact on the formulation development approach for solid dispersions to be administered as tablets.


Assuntos
Miconazol/química , Pirrolidinas/química , Compostos de Vinila/química , Química Farmacêutica/métodos , Umidade , Polímeros/química , Pressão , Comprimidos/química , Temperatura
7.
Materials (Basel) ; 15(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888542

RESUMO

Besides the unique shape memory effect and superelasticity, NiTi alloys also show excellent damping properties. However, the high damping effect is highly temperature-dependent, and only exists during cooling or heating over the temperature range where martensitic transformation occurs. As a result, expanding the temperature range of martensite transformation is an effective approach to widen the working temperature window with high damping performance. In this work, layer-structured functionally graded NiTi alloys were produced by laser powder bed fusion (L-PBF) alternating two or three sets of process parameters. The transformation behavior shows that austenite transforms gradually into martensite over a wide temperature range during cooling, and multiple transformation peaks are observed. A microstructure composed of alternating layers of B2/B19' phases is obtained at room temperature. The functionally graded sample shows high damping performance over a wide temperature range of up to 70 K, which originates from the gradual formation of the martensite phase during cooling. This work proves the potential of L-PBF to create NiTi alloys with high damping properties over a wide temperature range for damping applications.

8.
Mol Pharm ; 7(4): 1133-48, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20524682

RESUMO

The objective of the present study was to determine the solid state solubility and miscibility of naproxen in poly(vinylpyrrolidone) (PVP) and the mutual interaction using the standard thermodynamic models and thermal analysis. Solid dispersions were prepared by spray drying several compositions of naproxen and PVP with different molecular weights, viz., PVP K 12, PVP K 25 and PVP K 90, and analyzed using modulated differential scanning calorimetry (mDSC). The kinetic miscibility limit in terms of a single mixed phase glass transition temperature was found to be relatively similar for the dispersions containing PVP with different chain lengths (>or=50% w/w drug in PVP). But the systems with different PVP followed diverse patterns of composition dependent mixed phase glass transition temperature as well as the degree of plasticization by water. The crystalline solid solubility values of naproxen in PVP estimated by using its solubility data in n-methylpyrrolidone, a low molecular weight analogue of PVP, were 6.42, 5.85 and 5.81% w/w of drug in PVP K 12, PVP K 25 and PVP K 90 respectively. The values estimated for corresponding amorphous solubility showed no marked difference. The remarkable difference between thermodynamic solubility/miscibility and kinetic miscibility implied that naproxen was highly supersaturated in the PVP solid dispersions and only stabilized kinetically. The negative value of the drug-polymer interaction parameter (-0.36) signified the systems to be favorably mixing. The melting point depression data of naproxen in PVP pointed to the composition dependence and chain length effect on the interaction. The moisture sorption by the physical mixtures not only provided the composition dependent interaction parameter but also conferred an estimate of composition dependent miscibility of naproxen in PVP in the presence of water.


Assuntos
Naproxeno/química , Polímeros/química , Pirrolidinonas/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Solubilidade , Temperatura de Transição
9.
Pharm Res ; 27(5): 775-85, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20195707

RESUMO

PURPOSE: The present study aims to determine the drug / polymer miscibility level as a function of the preparation method for an amorphous solid dispersion model system containing itraconazole and eudragit E100. This value was compared to the theoretical crystalline drug solubility in the amorphous polymer and the miscibility of the amorphous drug in the amorphous polymer. METHODS: The amorphous solid dispersions were prepared via spray drying and film casting in order to evaluate the influence of the solvent drying rate. The experimental miscibility level was estimated using XRPD, MDSC, FT-IR, HPLC and TGA. The solubility and miscibility were estimated using the Flory-Huggins mixing theory and experimental drug in monomer solubility data. RESULTS: The experimental miscibility level was found to be 27.5% w/w for spray-dried and 15% for film-casted solid dispersions. FT-IR measurements confirmed the absence of saturable interactions like hydrogen bonds, and analysis of the mixed glass transition temperatures suggested low adhesion forces in the amorphous mixture. The solubility analysis rendered a positive FH interaction parameter, a crystalline solubility of approximately 0.012% w/w and an amorphous drug-polymer miscibility of approximately 7.07% w/w. CONCLUSION: The solid dispersions are significantly supersaturated with respect to both crystalline solubility and amorphous miscibility demonstrating the influence of manufacturing methodology.


Assuntos
Antifúngicos/química , Itraconazol/química , Acrilatos , Algoritmos , Antifúngicos/administração & dosagem , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Dessecação , Excipientes , Itraconazol/administração & dosagem , Polímeros , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
10.
AAPS PharmSciTech ; 10(1): 44-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19148764

RESUMO

In this study, scaling down nanosuspension production to 10 mg of drug compound and evaluation of the nanosuspensions to 1 mg of drug compound per test were investigated. Media milling of seven model drug compounds (cinnarizine-indomethacin-itraconazole-loviride-mebendazole-naproxen-phenytoin) was evaluated in a 96-well plate setup (10, 20, and 30 mg) and a glass-vial-based system in a planetary mill (10, 100, and 1,000 mg). Physicochemical properties evaluated on 1 mg of drug compound were drug content (high-performance liquid chromatography), size [dynamic light scattering (DLS)], morphology (scanning electron microscopy), thermal characteristics (differential scanning calorimetry), and X-ray powder diffraction (XRPD). Scaling down nanosuspension production to 10 mg of drug compound was feasible for the seven model compounds using both designs, the planetary mill design being more robust. Similar results were obtained for both designs upon milling 10 mg of drug compound. Drug content determination was precise and accurate. DLS was the method of choice for size measurements. Morphology evaluation and thermal analysis were feasible, although sample preparation had a big influence on the results. XRPD in capillary mode was successfully performed, both in the suspended state and after freeze-drying in the capillary. Results obtained for the latter were superior. Both the production and the physicochemical evaluation of nanosuspensions can be successfully downscaled, enabling nanosuspension screening applications in preclinical development settings.


Assuntos
Nanopartículas , Nanotecnologia , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Excipientes/química , Estudos de Viabilidade , Luz , Microscopia Eletrônica de Varredura , Preparações Farmacêuticas/normas , Difração de Pó , Controle de Qualidade , Espalhamento de Radiação , Propriedades de Superfície , Tecnologia Farmacêutica/normas , Fatores de Tempo
11.
J Comb Chem ; 10(5): 637-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18627202

RESUMO

A high-throughput experimentation method for studying the dissolution of phenytoin, a poorly water soluble drug, was developed and validated. Solid dispersions with 12 excipients (7 polymers and 5 surfactants) were prepared and tested. Each excipient was screened with three drug loadings: 10, 20, and 40% (w/w). Each solid dispersion was prepared in triplicate, for a total of 108 samples. The drug dissolution was studied in simulated gastric fluid without pepsin plus 1% sodium laurylsulfate. This study led to the identification of three improved formulations, exhibiting an extent of dissolution higher than 90% after both 30 and 60 min. The HTE results could be reproduced at a larger scale using a conventional solvent evaporating method, proving the reliability of the HTE protocol.


Assuntos
Anticonvulsivantes , Automação/métodos , Química Farmacêutica/métodos , Técnicas de Química Combinatória/métodos , Excipientes/química , Fenitoína , Solventes/química , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Cromatografia Líquida de Alta Pressão , Suco Gástrico/química , Fenitoína/administração & dosagem , Fenitoína/química , Polímeros/química , Solubilidade , Tensoativos/química , Fatores de Tempo
12.
Eur J Pharm Biopharm ; 69(1): 223-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18164930

RESUMO

This study aims to evaluate the in vivo performance of ordered mesoporous silica (OMS) as a carrier for poorly water soluble drugs. Itraconazole was selected as model compound. Physicochemical characterization was carried out by SEM, TEM, nitrogen adsorption, DSC, TGA and in vitro dissolution. After loading itraconazole into OMS, its oral bioavailability was compared with the crystalline drug and the marketed product Sporanox in rabbits and dogs. Plasma concentrations of itraconazole and OH-itraconazole were determined by HPLC-UV. After administration of crystalline itraconazole in dogs (20mg), no systemic itraconazole could be detected. Using OMS as a carrier, the AUC0-8 was boosted to 681+/-566 nM h. In rabbits, the AUC0-24 increased significantly from 521+/-159 nM h after oral administration of crystalline itraconazole (8 mg) to 1069+/-278 nM h when this dose was loaded into OMS. Tmax decreased from 9.8+/-1.8 to 4.2+/-1.8h. No significant differences (AUC, Cmax, and Tmax) could be determined when comparing OMS with Sporanox in both species. The oral bioavailability of itraconazole formulated with OMS as a carrier compares well with the marketed product Sporanox, in rabbits as well as in dogs. OMS can therefore be considered as a promising carrier to achieve enhanced oral bioavailability for drugs with extremely low water solubility.


Assuntos
Disponibilidade Biológica , Portadores de Fármacos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Dióxido de Silício/química , Água/química , Administração Oral , Adsorção , Animais , Área Sob a Curva , Cães , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nitrogênio/química , Porosidade , Coelhos
13.
Eur J Pharm Biopharm ; 70(2): 590-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18602992

RESUMO

Itraconazole nanosuspensions, stabilized with 10% TPGS (relative to the weight of itraconazole), were transformed into nanoparticulate powders by freeze-drying. The crystalline itraconazole nanoparticles showed peak broadening in the X-ray powder diffraction spectra and a lower melting point as inferred from differential scanning calorimetry. As it was found that freeze-drying compromised dissolution behavior, sucrose was added as a matrix, former (50,100 and 200%, relative to the weight of itraconazole). Higher amounts of sucrose unexpectedly resulted in a decrease in the dissolution rate. After thorough evaluation of the powders, it was found that whereas higher sucrose content showed a cryoprotective effect, agglomeration during the final phase of the subsequent drying step tended to increase with higher amounts of sucrose. Therefore, microcrystalline cellulose (MCC) was evaluated as an alternative matrix former. The inclusion of MCC resulted in fast dissolution that increased with increasing amounts of MCC [for powders containing 50%,100% and 200% MCC, (relative to the weight of itraconazole), the times required for 63.2% release were 10.5+/-0.7, 6.4+/-1.2 and 3.1+/-0.5min, respectively]. The dissolution profiles showed an initial phase of burst dissolution, followed by a phase of slower release. As the fraction showing burst dissolution increased with higher MCC content, the system holds promise to maintain the dissolution enhancing properties of nanoparticles in the dry form.


Assuntos
Celulose/química , Itraconazol/administração & dosagem , Nanopartículas/química , Sacarose/química , Liofilização , Itraconazol/química , Solubilidade , Suspensões , Tecnologia Farmacêutica
14.
Eur J Pharm Sci ; 35(4): 344-53, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18765282

RESUMO

Four alternative matrix formers [Avicel PH101, Fujicalin (CaHPO(4)), Aerosil 200 (SiO(2)) and Inutec SP1] were evaluated for their capability in preserving rapid dissolution after spray-drying of nanosuspensions. Model drug compounds selected were cinnarizine (CIN), itraconazole (ITR) and phenylbutazone (PHB) as they showed a decrease in dissolution rate upon spray-drying in the absence of additional matrix formers, yielding release values after 5min of dissolution (release(5min)) of 57.7+/-1.0% (CIN), 56.3+/-3.8% (ITR) and 67.4+/-1.3% (PHB). Compared to the situation without matrix former inclusion, the performance of Avicel PH101 was good for CIN (release(5min)=90.9+/-7.7%), intermediate for PHB (release(5min)=81.0+/-6.4%) and poor for ITR (release(5min)=42.1+/-4.2%). For Fujicalin, intermediate (PHB: release(5min)=87.7+/-3.0%) or poor (CIN: release(5min)=66.1+/-3.4%; ITR: release(5min)=55.9+/-5.2%) performance was seen. Results for Aerosil 200 were good for all compounds (CIN: release(5min)=91.5+/-2.5%; ITR: release(5min)=83.8+/-3.4%; PHB: release(5min)=95.5+/-2.4%), indicating that the large specific surface area was in this case translated into good matrix forming capabilities. Finally, the best results were obtained for Inutec SP1 (CIN: release(5min)=88.7+/-1.2%; ITR: release(5min)=93.4+/-2.4%; PHB: release(5min)=101.3+/-4.9%). Except for Avicel PH101, Cl-maps from X-ray microanalysis of the itraconazole powders supported the hypothesis that better dispersion of drug in the powders results in faster dissolution.


Assuntos
Excipientes/química , Pós/química , Suspensões/química , Antifúngicos/administração & dosagem , Antifúngicos/química , Cromatografia Líquida de Alta Pressão , Dessecação , Composição de Medicamentos , Microanálise por Sonda Eletrônica , Itraconazol/administração & dosagem , Itraconazol/química , Luz , Microscopia Eletrônica de Varredura , Nanopartículas , Tamanho da Partícula , Espalhamento de Radiação , Solubilidade
15.
Eur J Pharm Sci ; 35(1-2): 127-35, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18644441

RESUMO

d-alpha-Tocopherol polyethylene glycol 1000 succinate (TPGS)-stabilized nanosuspensions (25wt%, relative to the drug weight) were produced by media milling for 9 model drug compounds [cinnarizine, griseofulvin, indomethacin, itraconazole, loviride, mebendazole, naproxen, phenylbutazone and phenytoin]. After 3 months of storage at room temperature, Ostwald ripening occurred in all of the samples, except for indomethacin. Whereas lowering the temperature could slow down the ripening, it markedly increased upon storage at 40 degrees C. As for ripening, settling generally became more pronounced at 40 degrees C compared to 4 degrees C. As the nanosuspensions were afflicted by Ostwald ripening and settling, we explored nanosuspension drying as a strategy to circumvent these stability issues. Spray-drying and freeze-drying were evaluated for nanosuspensions and coarse reference suspensions of the compounds. Nanoparticle agglomeration could be visually observed in all of the powders. To evaluate the effect of agglomeration on the key characteristic of drug nanocrystals (i.e. rapid dissolution), dissolution experiments were performed under poor sink conditions. It was found that the compounds could be categorized into 3 groups: (i) compounds for which it was impossible to differentiate between coarse and nanosized products (griseofulvin, mebendazole, naproxen), (ii) compounds that gave clear differences in dissolution profiles between the nanosized and the coarse products, but for which drying of the nanosuspensions did not decrease the dissolution performance of the product (indomethacin, loviride, phenytoin) and (iii) compounds that showed differences between coarse and nanosized products, but for which drying of the nanosuspensions resulted in a significant decrease of the dissolution rate (cinnarizine, itraconazole, phenylbutazone). To gain insight on the influence of the drug compound characteristics on the dissolution of the dried products, the dissolution behavior of the compounds of the second and the third group was linked to the compound's characteristics. It was found that compounds with a more hydrophobic surface resulted in agglomerates which were harder to disintegrate, for which dissolution was compromised upon drying. The same was found for compounds having higher logP values.


Assuntos
Dessecação/métodos , Nanopartículas , Suspensões/química , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Excipientes , Liofilização , Luz , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Espalhamento de Radiação , Solubilidade , Espectrofotometria Ultravioleta , Propriedades de Superfície , Água/química
16.
Int J Pharm ; 357(1-2): 169-79, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18325700

RESUMO

The majority of innovative drug candidates are poorly water soluble and exhibit basic properties. This makes them highly dependent on the in vivo encountered acid-neutral pH sequence to achieve a sufficient dissolution and thus absorption. In this study, we evaluated the pH-independent generation of intraluminally induced supersaturation of the model compound itraconazole and its beneficial effect on the extent of absorption in the Caco-2 system and the rat in situ perfusion system. Local supersaturation was obtained by means of a solvent shift method and a novel formulation strategy based on ordered mesoporous silica (OMS) as a carrier. In vitro results evidenced that both methods were capable of creating a supersaturated state of itraconazole in fasted state simulated intestinal fluid (FaSSIF) when no preceding acidic dissolution was simulated. The extent of supersaturation exceeded 21.9 and 9.6 during at least 4h for the solvent shift method and OMS as a carrier, respectively. As compared to saturation conditions (0.09+/-0.01 microg), supersaturation induced by the solvent shift method as well as by the use of OMS increased transport across a Caco-2 cell monolayer more than 16-fold, resulting in the basolateral appearance of 2.20+/-0.29 microg and 1.46+/-0.03 microg itraconazole after 90 min, respectively. In the absence of an acid-neutral pH sequence, the performance of the marketed product Sporanox was inferior with total transport amounting to 0.12+/-0.03 microg after 90 min. Enhanced absorption was confirmed in the in situ perfusion model where OMS was able to boost total transport of itraconazole after 60 min from 0.03+/-0.01 nmol cm(-1) to 0.70+/-0.09 nmol cm(-1) compared to saturated equilibrium conditions in FaSSIF. The solid dosage form Sporanox again failed to achieve a similar extent of absorption enhancement (0.29+/-0.01 nmol cm(-1)). These findings suggest that intraluminal supersaturation can be created by the use of OMS and that preceding dissolution of basic compounds in the acidic medium of the stomach is not required to allow for efficient intestinal absorption. The use of OMS appears to be a promising strategy for the delivery of especially basic low solubility compounds in patients suffering from hypochlorhydria; the pH independency may also result in a more reproducible systemic exposure.


Assuntos
Antifúngicos/química , Antifúngicos/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Itraconazol/química , Itraconazol/farmacocinética , Dióxido de Silício/farmacologia , Animais , Transporte Biológico , Células CACO-2 , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Cromatografia Líquida de Alta Pressão , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Perfusão , Porosidade , Ratos , Solubilidade , Solventes
17.
Materials (Basel) ; 11(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208641

RESUMO

Due to unique functional and mechanical properties, NiTi shape memory alloys are one of the most promising metallic functional materials. However, the poor workability limits the extensive utilization of NiTi alloys as components of complex shapes. The emerging additive manufacturing techniques provide high degrees of freedom to fabricate complex structures. A freeform fabrication of complex structures by additive manufacturing combined with the unique functional properties (e.g., shape memory effect and superelasticity) provide great potential for material and structure design, and thus should lead to numerous applications. In this review, the unique microstructure that is generated by selective laser melting (SLM) is discussed first. Afterwards, the previously reported transformation behavior and mechanical properties of NiTi alloys produced under various SLM conditions are summarized.

18.
Chem Commun (Camb) ; (13): 1375-7, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17377687

RESUMO

This in vitro study reports on the enhanced release of the hydrophobic drug itraconazole from the ordered mesoporous SBA-15 silica material and on the existence of a critical mesopore diameter for enhancing release.


Assuntos
Itraconazol/química , Dióxido de Silício/química , Varredura Diferencial de Calorimetria , Nitrogênio/química
19.
Materials (Basel) ; 10(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027942

RESUMO

Linear and non-linear internal friction and the effective Young's modulus of a Ni50.8Ti49.2 alloy have been studied after different heat treatments, affecting hydrogen content, over wide ranges of temperatures (13-300 K) and strain amplitudes (10-7-10-4) at frequencies near 90 kHz. It has been shown that the contamination of the alloy by hydrogen strongly affects the internal friction and Young's modulus of the martensitic phase. Presence of hydrogen gives rise to a non-relaxation internal friction maximum due to a competition of two different temperature-dependent processes. The temperature position and height of the maximum depend strongly on the hydrogen content. We conclude that many of the internal friction peaks, reported earlier for differently treated Ni-Ti-based alloys, had the same origin as the present maximum.

20.
Am J Orthod Dentofacial Orthop ; 130(4): 460-70, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17045145

RESUMO

INTRODUCTION: The exact composition and material properties of the metal alloys used in orthodontics are usually not identified by or even available from manufacturers. This makes meaningful comparisons between wires impossible and is unacceptable with regard to biocompatibility issues. The aim of this study was to investigate the material characteristics of contemporary stainless steel (SS) and beta-titanium (beta-Ti) wires, also known as titanium-molybdenum alloy (TMA), for comparison. METHODS: Twenty-two different SS and beta-Ti wires, preferably straight wires sized 0.43 x 0.64 mm, (0.017 x 0.025 in) were tested blindly for wire dimensions, chemical compositions, bending and tensile properties, and surface characteristics. RESULTS: Four chemical compositions were found for the beta-Ti wires: titanium-11.5, molybdenum-6, zirconium-4.5 tin; titanium-3, aluminum-8, vanadium-6, chromium-4, molybdenum-4, zirconium; titanium-6, aluminum-4, vanadium, and titanium-45 niobium. The SS wires were of AISI type 304 or the nickel-free variant BioDur 108. All beta-Ti wires showed high surface roughness values. TMA 02 significantly had the highest E-modulus, TMA 02 and TMA 11 had the highest 0.2% yield strength, TMA 02 had the highest hardness, and TMA 12 was the most ductile wire of the beta-Ti wires. All SS wires showed high 0.2% yield strength, SS 10 significantly had the lowest E-modulus and was the most ductile wire, and SS 08 significantly showed the lowest hardness values of all SS wires. CONCLUSIONS: Significant differences were found between SS and beta-Ti wires, but there was little or no difference between the mechanical and physical characteristics tested in each subgroup. However, the morphological analysis clearly demonstrated that the finishing phase (annealing, polishing) of the wires' production process lacks the quality one would expect with regard to good mechanical properties and biocompatibility issues. Accurate specifications are urgently needed concerning the quality of orthodontic wires on the market.


Assuntos
Ligas Dentárias , Fios Ortodônticos , Titânio , Análise de Variância , Ligas Dentárias/química , Polimento Dentário , Análise do Estresse Dentário , Elasticidade , Fricção , Dureza , Teste de Materiais , Molibdênio , Maleabilidade , Aço Inoxidável/química , Estatísticas não Paramétricas , Propriedades de Superfície , Resistência à Tração , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA